1. ZARE, M. H., OLOOMI, S. A. A., NEGAHI, A. and MIRJALILY, S. A. A.,(2019), Investigating the Effect of Free Surface on Hydrodynamic Performance of Propeller, Journal Of Marine Engineering 15(29), p. 181-187. URL: http://marine-eng.ir/article-1-669-fa.html http://dorl.net/dor/20.1001.1.17357608.1398.15.29.2.0
2. ABAZARI, A., BEHZAD, M. and THIAGARAJAN, K. P.,(2022), Experimental assessment of hydrodynamic coefficients for a heave plate executing pitch oscillations, Journal of Waterway, Port, Coastal, and Ocean Engineering 148(1), p. 04021038.
3 [
DOI:10.1061/(ASCE)WW.1943-5460.000068]
3. AZIMINIA, M., ABAZARI, A., BEHZAD, M. and HAYATDAVOODI, M.,(2022), Stability analysis of parametric resonance in spar-buoy based on Floquet theory, Ocean Engineering 266, p. 113090. [
DOI:10.1016/j.oceaneng.2022.113090]
4. CARLTON, J.,(2018), Marine propellers and propulsion, Butterworth-Heinemann. https://maritimeexpert.files.wordpress.com/2018/03/marine-propellers-and-propulsion-carlton.pdf [
DOI:10.1016/B978-0-08-100366-4.00002-X]
5. MALMIR, R.,(2019), A CFD study on the correlation between the skew angle and blade number of hydrodynamic performance of a submarine propeller, Journal of the Brazilian Society of Mechanical Sciences and Engineering 41(8), p. 321. [
DOI:10.1007/s40430-019-1822-8]
6. SUN, J., YONEZAWA, K., SHIMA, E. and LIU, H.,(2023), Experimental investigations on aerodynamic and psychoacoustic characteristics of three-blade looprop propeller, The Journal of the Acoustical Society of America 154(4_supplement), p. A144-A144. [
DOI:10.1121/10.0023064]
7. LOVIBOND, O., ELBARGHTHI, A. F., DVORAK, V. and WEN, C.,(2023), Numerical analysis of propellers for electric boats using computational fluid dynamics modelling, Energy Conversion and Management: X 17, p. 100349.
https://doi.org/10.1016/j.ecmx.2023.100349 [
DOI:10.1016/j.ecmx.2023.100349 .]
8. МЕСРОПЯН, А. В. and ШАБЕЛЬНИК, Ю. А.,(2023), К вопросу об эффективности рабочего процесса петлевидных гребных винтов, Омский научный вестник. Серия «Авиационно-ракетное и энергетическое машиностроение» 7(2), p. 15-21.https://journals.omgtu.ru/index.php/onv_ariem/article/view/1349/ [
DOI:10.25206/2588-0373-2023-7-2-15-21]
9. SUN, J., YONEZAWA, K., SHIMA, E. and LIU, H.,(2021), Experimental Investigations on Aerodynamic and Psychoacoustic Characteristics of Loop-Type Propeller, in Asia-Pacific International Symposium on Aerospace Technology. Springer, p. 89-101. [
DOI:10.1007/978-981-19-2689-1_7]
10. HASSAN, H., ELSAKKA, M. and MOUSTAFA, M.,(2024), On the Comparative Hydrodynamic Analysis of Conventional and Innovative Closed-Loop Marine Propellers. [
DOI:10.21203/rs.3.rs-4814004/v1]
11. ABAZARI, A. and AZIMINIA, M.,(2023), Enhanced power extraction by splitting a single flap-type wave energy converter into a double configuration, Renewable Energy Research and Applications 4(2), p. 243-249. [
DOI:10.22044/rera.2022.11846.1118]
12. GHARECHAE, A., ABAZARI, A. and KETABDARI, M. J.,(2022), A semi-analytical solution for energy harvesting via the elastic motion of the circular floater of aquaculture cages attached with piezoelectric, Renewable Energy 196, p. 181-194. [
DOI:10.1016/j.renene.2022.06.093]
13. GHARECHAE, A., ABAZARI, A. and SOLEIMANI, K.,(2024), Performance assessment of a combined circular aquaculture cage floater and point absorber wave energy converters, Ocean Engineering 300, p. 117239. [
DOI:10.1016/j.oceaneng.2024.117239]
14. BEYKANI, M., SHAFAGHAT, R., YOUSEFI, A. and YOUSEFIFARD, M.,(2022), Experimental study of scale effect and immersion ratio on the performance characteristics of a surface piercing propeller, Journal Of Marine Engineering 18(35), p. 129-140. URL: http://marine-eng.ir/article-1-943-fa.html http://dorl.net/dor/20.1001.1.17357608.1401.18.35.10.1
15. https://boattest.com/sharrow-mx3-propeller
16. https://www.wageningen-b-series-propeller.com
17. TU, T. N.,(2019), Numerical simulation of propeller open water characteristics using RANSE method, Alexandria Engineering Journal 58(2), p. 531-537.
https://doi.org/10.1016/j.aej.2019.05.005 [
DOI:10.1016/j. aej.2019.05.005.]
18. SUBHAS, S., SAJI, V., RAMAKRISHNA, S. and DAS, H.,(2012), CFD analysis of a propeller flow and cavitation, International Journal of Computer Applications 55(16).
https://doi.org/10.5120/8841-3125 [
DOI:10.5120/8841-3125.]
19. SEIF, M. S.,(2023), Numerical simulation of hull and propeller interaction in acceleration maneuver, Journal Of Marine Engineering 19(38), p. 1-15. http://marine-eng.ir/article-1-948-fa.html [
DOI:10.61186/marineeng.19.38.1]
20. NAKISA, M., ABBASI, M. J. and AMINI, A. M.,(2010), in Proceedings of The 7th International Conference on Marine Technology (MARTEC 2010). https://www.academia.edu/25617114/Open_Water_Performance_of_a_Marine_Propeller_Model_Using_CFD
21. ITTC, (2014), Recommended procedures and guidelines 7.5-03-02-03, practical guidelines for ship cfd applications;, In: 27th International Towing Tank Conference. https://www.ittc.info/media/8165/75-03-02-03.pdf
22. SEIF, M. S.,(2023), Numerical investigation of stopping maneuver for two by reversing propeller at different speeds, Journal Of Marine Engineering 19(38), p. 51-61. URL: http://marine-eng.ir/article-1-997-fa.html [
DOI:10.61186/marineeng.19.38.51]
23. HTTPS://WWW.SVA-POTSDAM.DE/WP-CONTENT/UPLOADS/2016/04/SVA_REPORT_3752.PDF.https://www.sva-potsdam.de/en/pptc-smp11-workshop
24. EBRAHIMI, A., SEIF, M. S. and NOURI-BORUJERDI, A.,(2020), Noise Calculation of Non-cavitating Marine Propellers by Solving FW-H Acoustic Equations, Journal Of Marine Engineering 15(30), p. 13-22.URL: http://marine-eng.ir/article-1-750-fa.html [
DOI:10.29252/marineeng.15.30.13]