Write your message
Volume 20, Issue 44 (10-2024)                   Marine Engineering 2024, 20(44): 24-39 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sirousi H, Negahdari M. Numerical study and hydrodynamic analysis of Sharrow propeller. Marine Engineering 2024; 20 (44) :24-39
URL: http://marine-eng.ir/article-1-1122-en.html
1- Chabahar University of Maritime and Marine Sciences
2- Chabahar Maritime University
Abstract:   (942 Views)
Propellers are considered as the main propellants of vessels and from the beginning until now, engineers have always been trying to increase the performance of propellers, including their thrust and efficiency. Considering that new propellers called Sharrow Propeller have been introduced, The present study is an attempt to design, model and test this propeller. Considering that there is no information available on the performance characteristics of these propellers, including thrust and efficiency; Finally, it should be compared with the propellers of the B-series and the standard series of high-speed vessel with the same diameter and pitch to make sure that the geometry of the modeled propeller can be used as a vessel propeller. For this purpose, modeling was done using SolidWorks software and two propellers with different geometric parameters but with the same diameter and pitch were modeled. To check the performance of the propeller, an open water test was taken in the simulation software (Star CCM +) and data such as the thrust and torque produced by the propeller and the efficiency of the propeller were extracted and these characteries compared with the other mentioned propellers. The result was that Sharrow propeller 1 has much higher thrust and lower efficiency and Sharrow propeller 2 has less thrust but better efficiency and in general both propellers had better thrust than the two standard propellers.
Full-Text [PDF 2064 kb]   (508 Downloads)    
Type of Study: Research Paper | Subject: Ship Hydrodynamic
Received: 2024/08/23 | Accepted: 2024/12/4

References
1. ZARE, M. H., OLOOMI, S. A. A., NEGAHI, A. and MIRJALILY, S. A. A.,(2019), Investigating the Effect of Free Surface on Hydrodynamic Performance of Propeller, Journal Of Marine Engineering 15(29), p. 181-187. URL: http://marine-eng.ir/article-1-669-fa.html http://dorl.net/dor/20.1001.1.17357608.1398.15.29.2.0
2. ABAZARI, A., BEHZAD, M. and THIAGARAJAN, K. P.,(2022), Experimental assessment of hydrodynamic coefficients for a heave plate executing pitch oscillations, Journal of Waterway, Port, Coastal, and Ocean Engineering 148(1), p. 04021038. 3 [DOI:10.1061/(ASCE)WW.1943-5460.000068]
3. AZIMINIA, M., ABAZARI, A., BEHZAD, M. and HAYATDAVOODI, M.,(2022), Stability analysis of parametric resonance in spar-buoy based on Floquet theory, Ocean Engineering 266, p. 113090. [DOI:10.1016/j.oceaneng.2022.113090]
4. CARLTON, J.,(2018), Marine propellers and propulsion, Butterworth-Heinemann. https://maritimeexpert.files.wordpress.com/2018/03/marine-propellers-and-propulsion-carlton.pdf [DOI:10.1016/B978-0-08-100366-4.00002-X]
5. MALMIR, R.,(2019), A CFD study on the correlation between the skew angle and blade number of hydrodynamic performance of a submarine propeller, Journal of the Brazilian Society of Mechanical Sciences and Engineering 41(8), p. 321. [DOI:10.1007/s40430-019-1822-8]
6. SUN, J., YONEZAWA, K., SHIMA, E. and LIU, H.,(2023), Experimental investigations on aerodynamic and psychoacoustic characteristics of three-blade looprop propeller, The Journal of the Acoustical Society of America 154(4_supplement), p. A144-A144. [DOI:10.1121/10.0023064]
7. LOVIBOND, O., ELBARGHTHI, A. F., DVORAK, V. and WEN, C.,(2023), Numerical analysis of propellers for electric boats using computational fluid dynamics modelling, Energy Conversion and Management: X 17, p. 100349. https://doi.org/10.1016/j.ecmx.2023.100349 [DOI:10.1016/j.ecmx.2023.100349 .]
8. МЕСРОПЯН, А. В. and ШАБЕЛЬНИК, Ю. А.,(2023), К вопросу об эффективности рабочего процесса петлевидных гребных винтов, Омский научный вестник. Серия «Авиационно-ракетное и энергетическое машиностроение» 7(2), p. 15-21.https://journals.omgtu.ru/index.php/onv_ariem/article/view/1349/ [DOI:10.25206/2588-0373-2023-7-2-15-21]
9. SUN, J., YONEZAWA, K., SHIMA, E. and LIU, H.,(2021), Experimental Investigations on Aerodynamic and Psychoacoustic Characteristics of Loop-Type Propeller, in Asia-Pacific International Symposium on Aerospace Technology. Springer, p. 89-101. [DOI:10.1007/978-981-19-2689-1_7]
10. HASSAN, H., ELSAKKA, M. and MOUSTAFA, M.,(2024), On the Comparative Hydrodynamic Analysis of Conventional and Innovative Closed-Loop Marine Propellers. [DOI:10.21203/rs.3.rs-4814004/v1]
11. ABAZARI, A. and AZIMINIA, M.,(2023), Enhanced power extraction by splitting a single flap-type wave energy converter into a double configuration, Renewable Energy Research and Applications 4(2), p. 243-249. [DOI:10.22044/rera.2022.11846.1118]
12. GHARECHAE, A., ABAZARI, A. and KETABDARI, M. J.,(2022), A semi-analytical solution for energy harvesting via the elastic motion of the circular floater of aquaculture cages attached with piezoelectric, Renewable Energy 196, p. 181-194. [DOI:10.1016/j.renene.2022.06.093]
13. GHARECHAE, A., ABAZARI, A. and SOLEIMANI, K.,(2024), Performance assessment of a combined circular aquaculture cage floater and point absorber wave energy converters, Ocean Engineering 300, p. 117239. [DOI:10.1016/j.oceaneng.2024.117239]
14. BEYKANI, M., SHAFAGHAT, R., YOUSEFI, A. and YOUSEFIFARD, M.,(2022), Experimental study of scale effect and immersion ratio on the performance characteristics of a surface piercing propeller, Journal Of Marine Engineering 18(35), p. 129-140. URL: http://marine-eng.ir/article-1-943-fa.html http://dorl.net/dor/20.1001.1.17357608.1401.18.35.10.1
15. https://boattest.com/sharrow-mx3-propeller
16. https://www.wageningen-b-series-propeller.com
17. TU, T. N.,(2019), Numerical simulation of propeller open water characteristics using RANSE method, Alexandria Engineering Journal 58(2), p. 531-537. https://doi.org/10.1016/j.aej.2019.05.005 [DOI:10.1016/j. aej.2019.05.005.]
18. SUBHAS, S., SAJI, V., RAMAKRISHNA, S. and DAS, H.,(2012), CFD analysis of a propeller flow and cavitation, International Journal of Computer Applications 55(16). https://doi.org/10.5120/8841-3125 [DOI:10.5120/8841-3125.]
19. SEIF, M. S.,(2023), Numerical simulation of hull and propeller interaction in acceleration maneuver, Journal Of Marine Engineering 19(38), p. 1-15. http://marine-eng.ir/article-1-948-fa.html [DOI:10.61186/marineeng.19.38.1]
20. NAKISA, M., ABBASI, M. J. and AMINI, A. M.,(2010), in Proceedings of The 7th International Conference on Marine Technology (MARTEC 2010). https://www.academia.edu/25617114/Open_Water_Performance_of_a_Marine_Propeller_Model_Using_CFD
21. ITTC, (2014), Recommended procedures and guidelines 7.5-03-02-03, practical guidelines for ship cfd applications;, In: 27th International Towing Tank Conference. https://www.ittc.info/media/8165/75-03-02-03.pdf
22. SEIF, M. S.,(2023), Numerical investigation of stopping maneuver for two by reversing propeller at different speeds, Journal Of Marine Engineering 19(38), p. 51-61. URL: http://marine-eng.ir/article-1-997-fa.html [DOI:10.61186/marineeng.19.38.51]
23. HTTPS://WWW.SVA-POTSDAM.DE/WP-CONTENT/UPLOADS/2016/04/SVA_REPORT_3752.PDF.https://www.sva-potsdam.de/en/pptc-smp11-workshop
24. EBRAHIMI, A., SEIF, M. S. and NOURI-BORUJERDI, A.,(2020), Noise Calculation of Non-cavitating Marine Propellers by Solving FW-H Acoustic Equations, Journal Of Marine Engineering 15(30), p. 13-22.URL: http://marine-eng.ir/article-1-750-fa.html [DOI:10.29252/marineeng.15.30.13]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.