Write your message

XML Persian Abstract Print


1- Department of Mechanical Engineering, Asa.C., Islamic Azad University, Asadabad, Iran
Abstract:   (33 Views)
Increasing the efficiency of systems in commercial ships, as the most economical means of transportation, is important for reducing emissions and costs. Increasing propeller efficiency reduces the cost of operating a ship. The most popular kinds of propeller in merchant ships are metallic submerged propellers. Due to elasticity of propeller structure, hydrodynamic loads acting on propeller structure change its geometry, thus the hydrodynamic efficiency changes. Deformations of the blade depend on the properties of the structure, the elastic modulus and the Poisson ratio. To investigate the effect of structural properties and deformations on hydrodynamic performance, the Fluid-Structure Interaction was simulated for a propeller named VP1304. For this purpose, 6 cases with elastic moduli of 0.7, 6.8, and 68 GPa and Poisson's ratio of 0.17, 0.33, and 0.49 were simulated. By decreasing the elastic modulus and Poisson's ratio, deformations increased and the changes in thrust and torque coefficients and efficiency increased compared to the rigid propeller. In most cases, the propeller efficiency decreased and in certain cases, the propeller efficiency increased, which indicates that it is possible to increase the propeller efficiency by changing the structural properties of the blade.
Full-Text [PDF 1292 kb]   (11 Downloads)    
Type of Study: Research Paper | Subject: CFD
Received: 2025/09/25 | Accepted: 2026/02/7

References
1. P. J. Maljaar and M. L. Kaminski, (2015), Hydro-elastic Analysis of Flexible Propellers: an overview, Maritime Technology and Engineering, vol. 2, no. 11, pp. 15-17. [DOI:10.1201/b17494-76]
2. T. Søntvedt, (1974), Propeller blade stresses, application of finite element methods, Computers & Structures, vol. 4, no. 1, pp. 193-204. [DOI:10.1016/0045-7949(74)90082-0]
3. S. Zhiqiang and G. Rixiu, (1996), Hydroelasticity of rotating bodies-theory and application, Marine structures, vol. 9, no. 6, pp. 631-646. [DOI:10.1016/0951-8339(95)00010-0]
4. H.-J. Lin and J. Jyi Lin, (1996), Nonlinear hydroelastic behavior of propellers using a finite-element method and lifting surface theory, Journal of Marine Science and Technology, vol. 1, no. 2, pp. 114-124. https://doi.org/10.1007/BF02391167 [DOI:10.1007/bf02391167]
5. H. Ghassemi, G. Ghassabzadeh and M. G. Saryazdi, (2013), Effect of material on hydro-elastic behaviour of marine propeller by using BEM-FEM hybrid softwaren, Polish Maritime Research , vol. 20, no. 4, pp. 62-70. [DOI:10.2478/pomr-2013-0042]
6. Y. Ashkenazi, I. Gol'fman, L. Rezhkov and N. Sido, (1974), Glass-Fiber-Reinforced Plastic Parts in Ship Machinery, Sudostroyeniye Publishing House, pp. 138-152. [DOI:10.4271/550155]
7. A. P. Mouritz, E. Gellert, P. Burchill and K. Challis, (2001), Review of advanced composite structures for naval ships and submarines, Composite structures, vol. 53, no. 1, pp. 121-142. https://doi.org/10.1016/S0263-8223(00)00175-6 [DOI:10.1016/s0263-8223(00)00175-6]
8. H. Lee, M. C. Song, S. Han, B. J. Chang and J. C. Suh, (2017), Hydro-elastic aspects of a composite marine propeller in accordance with ply lamination methods, Journal of Marine Science and Technology, vol. 22, no. 1, pp. 479-493. [DOI:10.1007/s00773-016-0428-4]
9. W. Zhang, F. Li, J. Ma, X. Ning, S. Sun and Y. Hu, (2022), Fluid-structure interaction analysis of the rudder vibrations in propeller wake, Ocean Engineering, vol. 265, no. 112673. [DOI:10.1016/j.oceaneng.2022.112673]
10. V. R. Krishnaa, S. P. Sanaka, N. Pardhasaradhi and B. R. Rao, (2024), Hydro-elastic computational analysis of a marine propeller using two-way fluid structure interaction, Journal of Ocean Engineering and Science, vol. 7, no. 3, pp. 280-291. [DOI:10.1016/j.joes.2021.08.010]
11. L. Feng , G. Ding, Y. Hu, W. Song and Z. Lei, (2025), Identification of distributed loads on propellers based on strain modal, Applied Ocean Research, vol. 162, no. 104712. [DOI:10.2139/ssrn.5229549]
12. E. Yari, M. H. Karimi and S. Kamin, (2025), Fluid-Structure Interaction Investigation and Skew Angle Effect on Stress - In Persian, Journal of Marine Engineering, vol. 21, no. 47, pp. 14-24. http://marine-eng.ir/article-1-1144-fa.html
13. S. Kim and S. Shin, (2025), Improved unsteady fluid-structure interaction analysis using the dynamic mode decomposition on a composite marine propeller, Ocean Engineering, vol. 319, p. 120255. [DOI:10.1016/j.oceaneng.2024.120255]
14. A. M. Nebiewa, A. M. Abdelsalam, I. M. Sakr, W. A. El-Askary, H. A. Abdalla and K. A. Ibrahim, (2026), Static load and structural analysis of a small horizontal axis wind turbine blade: Experimental and theoretical studies using the fluid-structure interaction method, Renewable Energy, vol. 256, no. 124385. [DOI:10.2139/ssrn.5204925]
15. A. Hajivand and S. Mousavizadegan, (2015), Virtual maneuvering test in CFD media in presence of free surface, International Journal of Naval Architecture and Ocean Engineering, vol. 7, no. 3, pp. 540-558. [DOI:10.1515/ijnaoe-2015-0039]
16. H. Rusche, (2003), Computational fluid dynamics of dispersed two-phase flows at high phase fractions, Phd thesis in Imperial College London (University of London). [DOI:10.1007/978-3-642-01273-0_1]
17. T.-L. Liu and Z.-M. Guo b, (2013), Analysis of wave spectrum for submerged bodies moving near the free Surface, Ocean Engineering, vol. 58, no. 15, pp. 239-251. [DOI:10.1016/j.oceaneng.2012.10.003]
18. J. H. Ferziger and P. Milovan, (2002), Computational methods for fluid dynamics, New York: Springer. [DOI:10.5772/7110]
19. M. Saniee Nejad, (2019), Fundamentals of turbulent flows and turbulence modeling- In Persian, Trhran: Danesh Negaar. [DOI:10.1007/978-3-031-94016-3_3]
20. Star CCM+ Software, (2018), Simcenter STAR-CCM+ Documentation Version 13.04, New York: Siemens. [DOI:10.2514/6.2020-2736] [PMID]
21. M. H. Saad, (2009), Elasticity: theory, applications, and numerics, Massachusetts, Academic Press. [DOI:10.1007/978-3-0348-8370-2_8]
22. O. Bordbar and M. Rostami V., (2020), Numerical Simulation of Hydrodynamic Performance of the Submerged Propeller with Lifting Line and Finite Volume Methods - In Persian, Iranian Journal of Marine technology (Daryafonoon), vol. 15, pp. 50-59. [DOI:10.23967/marine.2023.120]
23. U. Barkmann, (2011), Potsdam Propeller Test Case (PPTC)-Open Water Tests with the Model Propeller VP1304, Potsdam, Germany. https://doi.org/10.7546/EngSci.LXI.24.01.02 [DOI:10.7546/engsci.lxi.24.01.02]
24. U. Barkmann, H. J. Heinke and L. Lübke, (2011), Potsdam Propeller Test Case (PPTC), The Second International Symposium on Marine Propulsors-smp 11, vol. 11, pp. 36-38. [DOI:10.1007/s11804-018-0008-6]
25. M. Sanieinejad, (2009), Fundamentals of turbulent flows and turbulence modeling - In Persian, Tehran: Daneshgar. [DOI:10.1007/978-3-031-94016-3_3]
26. M. Luhar and H. M. Nepf, (2011), Flow‐induced reconfiguration of buoyant and flexible aquatic vegetation, Limnology and Oceanography, vol. 56, pp. 2003-20017 [DOI:10.4319/lo.2011.56.6.2003]
27. F. B. Tian, H. Dai, H. Luo, J. F. Doyle and B. Ro, (2014), Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems, Journal of computational physics, vol. 258, pp. 451-469. [DOI:10.1016/j.jcp.2013.10.047] [PMID] []

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.