1. P. J. Maljaar and M. L. Kaminski, (2015), Hydro-elastic Analysis of Flexible Propellers: an overview, Maritime Technology and Engineering, vol. 2, no. 11, pp. 15-17. [
DOI:10.1201/b17494-76]
2. T. Søntvedt, (1974), Propeller blade stresses, application of finite element methods, Computers & Structures, vol. 4, no. 1, pp. 193-204. [
DOI:10.1016/0045-7949(74)90082-0]
3. S. Zhiqiang and G. Rixiu, (1996), Hydroelasticity of rotating bodies-theory and application, Marine structures, vol. 9, no. 6, pp. 631-646. [
DOI:10.1016/0951-8339(95)00010-0]
4. H.-J. Lin and J. Jyi Lin, (1996), Nonlinear hydroelastic behavior of propellers using a finite-element method and lifting surface theory, Journal of Marine Science and Technology, vol. 1, no. 2, pp. 114-124.
https://doi.org/10.1007/BF02391167 [
DOI:10.1007/bf02391167]
5. H. Ghassemi, G. Ghassabzadeh and M. G. Saryazdi, (2013), Effect of material on hydro-elastic behaviour of marine propeller by using BEM-FEM hybrid softwaren, Polish Maritime Research , vol. 20, no. 4, pp. 62-70. [
DOI:10.2478/pomr-2013-0042]
6. Y. Ashkenazi, I. Gol'fman, L. Rezhkov and N. Sido, (1974), Glass-Fiber-Reinforced Plastic Parts in Ship Machinery, Sudostroyeniye Publishing House, pp. 138-152. [
DOI:10.4271/550155]
7. A. P. Mouritz, E. Gellert, P. Burchill and K. Challis, (2001), Review of advanced composite structures for naval ships and submarines, Composite structures, vol. 53, no. 1, pp. 121-142.
https://doi.org/10.1016/S0263-8223(00)00175-6 [
DOI:10.1016/s0263-8223(00)00175-6]
8. H. Lee, M. C. Song, S. Han, B. J. Chang and J. C. Suh, (2017), Hydro-elastic aspects of a composite marine propeller in accordance with ply lamination methods, Journal of Marine Science and Technology, vol. 22, no. 1, pp. 479-493. [
DOI:10.1007/s00773-016-0428-4]
9. W. Zhang, F. Li, J. Ma, X. Ning, S. Sun and Y. Hu, (2022), Fluid-structure interaction analysis of the rudder vibrations in propeller wake, Ocean Engineering, vol. 265, no. 112673. [
DOI:10.1016/j.oceaneng.2022.112673]
10. V. R. Krishnaa, S. P. Sanaka, N. Pardhasaradhi and B. R. Rao, (2024), Hydro-elastic computational analysis of a marine propeller using two-way fluid structure interaction, Journal of Ocean Engineering and Science, vol. 7, no. 3, pp. 280-291. [
DOI:10.1016/j.joes.2021.08.010]
11. L. Feng , G. Ding, Y. Hu, W. Song and Z. Lei, (2025), Identification of distributed loads on propellers based on strain modal, Applied Ocean Research, vol. 162, no. 104712. [
DOI:10.2139/ssrn.5229549]
12. E. Yari, M. H. Karimi and S. Kamin, (2025), Fluid-Structure Interaction Investigation and Skew Angle Effect on Stress - In Persian, Journal of Marine Engineering, vol. 21, no. 47, pp. 14-24. http://marine-eng.ir/article-1-1144-fa.html
13. S. Kim and S. Shin, (2025), Improved unsteady fluid-structure interaction analysis using the dynamic mode decomposition on a composite marine propeller, Ocean Engineering, vol. 319, p. 120255. [
DOI:10.1016/j.oceaneng.2024.120255]
14. A. M. Nebiewa, A. M. Abdelsalam, I. M. Sakr, W. A. El-Askary, H. A. Abdalla and K. A. Ibrahim, (2026), Static load and structural analysis of a small horizontal axis wind turbine blade: Experimental and theoretical studies using the fluid-structure interaction method, Renewable Energy, vol. 256, no. 124385. [
DOI:10.2139/ssrn.5204925]
15. A. Hajivand and S. Mousavizadegan, (2015), Virtual maneuvering test in CFD media in presence of free surface, International Journal of Naval Architecture and Ocean Engineering, vol. 7, no. 3, pp. 540-558. [
DOI:10.1515/ijnaoe-2015-0039]
16. H. Rusche, (2003), Computational fluid dynamics of dispersed two-phase flows at high phase fractions, Phd thesis in Imperial College London (University of London). [
DOI:10.1007/978-3-642-01273-0_1]
17. T.-L. Liu and Z.-M. Guo b, (2013), Analysis of wave spectrum for submerged bodies moving near the free Surface, Ocean Engineering, vol. 58, no. 15, pp. 239-251. [
DOI:10.1016/j.oceaneng.2012.10.003]
18. J. H. Ferziger and P. Milovan, (2002), Computational methods for fluid dynamics, New York: Springer. [
DOI:10.5772/7110]
19. M. Saniee Nejad, (2019), Fundamentals of turbulent flows and turbulence modeling- In Persian, Trhran: Danesh Negaar. [
DOI:10.1007/978-3-031-94016-3_3]
20. Star CCM+ Software, (2018), Simcenter STAR-CCM+ Documentation Version 13.04, New York: Siemens. [
DOI:10.2514/6.2020-2736] [
PMID]
21. M. H. Saad, (2009), Elasticity: theory, applications, and numerics, Massachusetts, Academic Press. [
DOI:10.1007/978-3-0348-8370-2_8]
22. O. Bordbar and M. Rostami V., (2020), Numerical Simulation of Hydrodynamic Performance of the Submerged Propeller with Lifting Line and Finite Volume Methods - In Persian, Iranian Journal of Marine technology (Daryafonoon), vol. 15, pp. 50-59. [
DOI:10.23967/marine.2023.120]
23. U. Barkmann, (2011), Potsdam Propeller Test Case (PPTC)-Open Water Tests with the Model Propeller VP1304, Potsdam, Germany.
https://doi.org/10.7546/EngSci.LXI.24.01.02 [
DOI:10.7546/engsci.lxi.24.01.02]
24. U. Barkmann, H. J. Heinke and L. Lübke, (2011), Potsdam Propeller Test Case (PPTC), The Second International Symposium on Marine Propulsors-smp 11, vol. 11, pp. 36-38. [
DOI:10.1007/s11804-018-0008-6]
25. M. Sanieinejad, (2009), Fundamentals of turbulent flows and turbulence modeling - In Persian, Tehran: Daneshgar. [
DOI:10.1007/978-3-031-94016-3_3]
26. M. Luhar and H. M. Nepf, (2011), Flow‐induced reconfiguration of buoyant and flexible aquatic vegetation, Limnology and Oceanography, vol. 56, pp. 2003-20017 [
DOI:10.4319/lo.2011.56.6.2003]
27. F. B. Tian, H. Dai, H. Luo, J. F. Doyle and B. Ro, (2014), Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems, Journal of computational physics, vol. 258, pp. 451-469. [
DOI:10.1016/j.jcp.2013.10.047] [
PMID] [
]