1. 1. Lian, J., et al., Analysis on flow induced motion of cylinders with different cross sections and the potential capacity of energy transference from the flow. 2017. 2017. [
DOI:10.1155/2017/4356367]
2. Asre, C.M., V.K. Kurkute, and N.J. Kanu, Power generation with the application of vortex wind turbine. Materials Today: Proceedings, 2022. 56: p. 2428-2436. [
DOI:10.1016/j.matpr.2021.08.228]
3. Balakrishnan, S. and R. Arun, N, VB (2019). Design, Analysis and Prototype of Vortex Bladeless Wind Turbine: p. 7305-7308.
4. Dehghan Manshadi, M., et al., Predicting the Parameters of Vortex Bladeless Wind Turbine Using Deep Learning Method of Long Short-Term Memory. Energies, 2021. 14(16): p. 4867. [
DOI:10.3390/en14164867]
5. Villarreal, D.Y. and V.B. SL, VIV resonant wind generators. Vortex Blade-less SL https://vortexbladeless. com, 2018.
6. Song, R., et al., A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension. Ceramics International, 2015. 41: p. S768-S773. [
DOI:10.1016/j.ceramint.2015.03.262]
7. Dai, H., et al., Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations. Applied Physics Letters, 2016. 108(5): p. 053902. [
DOI:10.1063/1.4941546]
8. Zhang, L., et al., Improving the performance of aeroelastic energy harvesters by an interference cylinder. Applied Physics Letters, 2017. 111(7): p. 073904. [
DOI:10.1063/1.4999765]
9. Song, J., et al., Performance of a circular cylinder piezoelectric wind energy harvester fitted with a splitter plate. Applied Physics Letters, 2017. 111(22): p. 223903. [
DOI:10.1063/1.5008918]
10. Jia, J., et al., Modeling and analysis of upright piezoelectric energy harvester under aerodynamic vortex-induced vibration. Micromachines, 2018. 9(12): p. 667. [
DOI:10.3390/mi9120667] [
PMID] [
]
11. Thomai, M.P., et al. Experimental analysis of vortex induced vibration in the bladeless small wind turbine. in Gas Turbine India Conference. 2019. American Society of Mechanical Engineers. [
DOI:10.1115/GTINDIA2019-2484]
12. Francis, S., V. Umesh, and S. Shivakumar, Design and Analysis of Vortex Bladeless Wind Turbine. Materials Today: Proceedings, 2021. 47: p. 5584-5588. [
DOI:10.1016/j.matpr.2021.03.469]
13. Maftouni, N., M. Dehghan Manshadi, and S.M. Mousavi, The effect of drag force on the body frequencies and the power spectrum of a bladeless wind turbine. Transactions of the Canadian Society for Mechanical Engineering, 2021. 45(4): p. 604-611. [
DOI:10.1139/tcsme-2020-0194]
14. Sabab, M.W. and S. Mohd, Aerodynamic Characteristic Of Vortex Bladeless Wind Turbine: A Short Review. Research Progress in Mechanical and Manufacturing Engineering, 2021. 2(1): p. 177-186.
15. Ramadhany, M.F., et al., Optimization of Mechanical Design Bladeless Wind Turbine for Electricity Fulfilment in Nusa Tenggara Timur, Indonesia. arXiv preprint arXiv:2205.02786, 2022. [
DOI:10.21203/rs.3.rs-1540751/v3]
16. Younis, A., et al., Design and Development of Bladeless Vibration-Based Piezoelectric Energy-Harvesting Wind Turbine. Applied Sciences, 2022. 12(15): p. 7769. [
DOI:10.3390/app12157769]
17. Degroote, J., et al., Simulation of fluid-structure interaction with the interface artificial compressibility method. International Journal for Numerical Methods in Biomedical Engineering, 2010. 26(3‐4): p. 276-289. [
DOI:10.1002/cnm.1276]
18. Lesoinne, M., C. Farhat, and engineering, Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Computer methods in applied mechanics, 1996. 134(1-2): p. 71-90. [
DOI:10.1016/0045-7825(96)01028-6]
19. Wang, H., Q. Zhai, and J. Zhang, Numerical study of flow-induced vibration of a flexible plate behind a circular cylinder. Ocean Engineering, 2018. 163: p. 419-430. [
DOI:10.1016/j.oceaneng.2018.06.004]
20. Wang, H., et al., Wake-induced vibrations of an elastically mounted cylinder located downstream of a stationary larger cylinder at low Reynolds numbers. Journal of Fluids Structures, 2014. 50: p. 479-496. [
DOI:10.1016/j.jfluidstructs.2014.07.006]
21. ANSYS, I., ANSYS FLUENT user's guide. Release 18.2. 2017.
22. Ramegowda, P.C., et al., Hierarchically decomposed finite element method for a triply coupled piezoelectric, structure, and fluid fields of a thin piezoelectric bimorph in fluid. Computer Methods in Applied Mechanics Engineering, 2020. 365: p. 113006. [
DOI:10.1016/j.cma.2020.113006]
23. Bathe, K.-J., Finite Element Procedures. 2006: Klaus-Jurgen Bathe.
24. Behjat, B. and M. Khoshravan, Geometrically nonlinear static and free vibration analysis of functionally graded piezoelectric plates. Composite Structures, 2012. 94(3): p. 874-882. [
DOI:10.1016/j.compstruct.2011.08.024]
25. Allik, H. and T.J. Hughes, Finite element method for piezoelectric vibration. International journal for numerical methods in engineering, 1970. 2(2): p. 151-157. [
DOI:10.1002/nme.1620020202]
26. Kojić, M. and K.-J. Bathe, Studies of finite element procedures-Stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian Jaumann formulation. Computers Structures, 1987. 26(1-2): p. 175-179. [
DOI:10.1016/0045-7949(87)90247-1]
27. Espath, L., et al., A NURBS‐based finite element model applied to geometrically nonlinear elastodynamics using a corotational approach. International Journal for Numerical Methods in Engineering, 2015. 102(13): p. 1839-1868. [
DOI:10.1002/nme.4870]
28. McMeeking, R.M. and J. Rice, Finite-element formulations for problems of large elastic-plastic deformation. International Journal of Solids Structures, 1975. 11(5): p. 601-616. [
DOI:10.1016/0020-7683(75)90033-5]
29. Sokhanvar, S., J. Dargahi, and M. Packirisamy, Hyperelastic modelling and parametric study of soft tissue embedded lump for MIS applications. The International Journal of Medical Robotics Computer Assisted Surgery, 2008. 4(3): p. 232-241. [
DOI:10.1002/rcs.202] [
PMID]
30. Kohnke, P., Theory reference for the mechanical APDL and mechanical applications. Ansys Inc, release, 2009. 12.
31. Malgaca, L., Integration of active vibration control methods with finite element models of smart laminated composite structures. Composite Structures, 2010. 92(7): p. 1651-1663. [
DOI:10.1016/j.compstruct.2009.11.032]
32. Subbaraj, K. and M. Dokainish, A survey of direct time-integration methods in computational structural dynamics-II. Implicit methods. Computers Structures, 1989. 32(6): p. 1387-1401. [
DOI:10.1016/0045-7949(89)90315-5]
33. Jacob, B.P. and N.F.F. Ebecken, An optimized implementation of the Newmark/Newton‐Raphson algorithm for the time integration of non‐linear problems. Communications in Numerical Methods in Engineering, 1994. 10(12): p. 983-992. [
DOI:10.1002/cnm.1640101204]
34. Kaneko, S., et al., Numerical study of active control by piezoelectric materials for fluid-structure interaction problems. 2018. 435: p. 23-35. [
DOI:10.1016/j.jsv.2018.07.044]
35. Jean-Mark, V., et al., Strong coupling algorithm to solve fluid-structure interaction problems with a staggered approach. Report, Open Engineering SA, 2009.
36. Richter, T., Numerical methods for fluid-structure interaction problems. Institute for Applied Mathematics, University of Heidelberg, Germany, 2010.
37. Hou, G., J. Wang, and A. Layton, Numerical methods for fluid-structure interaction-a review. Communications in Computational Physics, 2012. 12(2): p. 337-377. [
DOI:10.4208/cicp.291210.290411s]
38. Benra, F.-K., et al., A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions. Journal of applied mathematics, 2011. 2011. [
DOI:10.1155/2011/853560]
39. Anagnostopoulos, P., P.J.J.o.F. Bearman, and Structures, Response characteristics of a vortex-excited cylinder at low Reynolds numbers. 1992. 6(1): p. 39-50. [
DOI:10.1016/0889-9746(92)90054-7]
40. Turek, S. and J. Hron, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, in Fluid-structure interaction. 2006, Springer. p. 371-385. [
DOI:10.1007/3-540-34596-5_15]
41. Ramegowda, P.C., et al. A finite element approach for a coupled numerical simulation of fluid-structure-electric interaction in mems. in COUPLED VII: proceedings of the VII International Conference on Computational Methods for Coupled Problems in Science and Engineering. 2017. CIMNE.
42. Narendran, K., et al. Hydrodynamic Study of Flow Past Cylinders with Different Diameters at High Reynolds Number. in Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018). 2019. Springer. [
DOI:10.1007/978-981-13-3134-3_62]