پیام خود را بنویسید

XML English Abstract Print


1- استادیار،گروه مهندسی عمران، دانشگاه علم و فناوری مازندران، بهشهر
2- استادیار،گروه مهندسی عمران، دانشگاه هرمزگان، هرمزگان
3- دانشجوی کارشناسی مهندسی عمران، دانشگاه علم و فناوری مازندران
چکیده:   (64 مشاهده)
با گسترش بهره‌برداری از منابع دریایی و افزایش فعالیت‌های حمل‌ونقل دریایی، موج‌شکن‌های شناور به عنوان جایگزینی کارآمد برای نمونه‌های ثابت، به دلیل ویژگی‌هایی همچون قابلیت جابه‌جایی، هزینه ساخت و نصب کمتر، و اثرات زیست‌محیطی محدودتر، مورد توجه ویژه قرار گرفته‌اند. مدل‌سازی هیدرودینامیکی این سازه‌ها به‌صورت دوبعدی و سه‌بعدی انجام می‌شود؛ مدل‌های دوبعدی سریع‌تر اما محدود، و مدل‌های سه‌بعدی با وجود پیچیدگی بیشتر، امکان ارزیابی دقیق‌تر اندرکنش موج - سازه را فراهم می‌کنند. در این پژوهش یک مدل سه‌بعدی هیدرودینامیکی برای مقایسه عملکرد موج‌شکن‌های شناور با مقاطع اف‌شکل و مستطیلی تحت شرایط مختلف هندسی و هیدرودینامیکی توسعه داده شد. شبیه‌سازی‌ها در حوزه‌های فرکانس و زمان، با تمرکز بر پارامترهایی مانند عمق فرورفتگی، طول سازه و فرکانس موج انجام گرفت. ضرایب کلیدی هیدرودینامیکی شامل جرم افزوده و میرایی تشعشعی محاسبه و اثر آن‌ها بر شاخص پاسخ دامنه تحلیل شد. نتایج نشان داد که مقطع اف‌شکل در برخی بازه‌های فرکانسی، به‌ویژه در حرکات قائم و چرخشی، عملکرد بهتری در کاهش دامنه حرکات و تضعیف انرژی امواج دارد، در حالی که مقطع مستطیلی رفتاری پایدارتر و یکنواخت‌تر در گستره وسیع‌تری از شرایط موجی ارائه می‌دهد. بررسی پارامتریک ابعاد نیز نشان داد که هندسه مقطع علاوه بر کارایی هیدرودینامیکی، بر پیامدهای زیست‌محیطی مرتبط با الگوهای جریان و رسوب‌گذاری مؤثر است. این نتایج می‌تواند در طراحی و بهینه‌سازی موج‌شکن‌های شناور با بازدهی بالا و سازگاری زیست‌محیطی کاربرد داشته باشد.
متن کامل [PDF 2454 kb]   (31 دریافت)    

نکات برجسته:
1- ارائه یک مدل سه‌بعدی هیدرودینامیکی برای مقایسه عملکرد موج‌شکن‌های شناور با مقاطع F-شکل و مستطیلی.
2- نشان دادن کارایی بالاتر مقطع اف شکل در کاهش حرکات و اتلاف انرژی موج در برخی بازه‌های فرکانسی.
3- اثبات پایداری رفتاری بیشتر مقطع مستطیلی در دامنه وسیع‌تری از شرایط موجی.
4- تبیین تأثیر کلیدی هندسه مقطع بر پاسخ دینامیکی سازه و ضرایب هیدرودینامیکی.
5- ارائه نتایج کاربردی برای طراحی بهینه و سازگار با محیط زیست موج‌شکن‌های شناور.



 

نوع مطالعه: مقاله پژوهشي | موضوع مقاله: هیدروديناميك سازه های ساحلی و فراساحلی
دریافت: 1404/7/2 | پذیرش: 1404/10/16

فهرست منابع
1. A.S. Koraim., (2015), Mathematical study for analyzing caisson breakwater supported by two rows of piles, Journal of Ocean Engineering. 104 89-106. https://doi.org/10.1016/j.oceaneng.2015.04.088 [DOI:10.1016/j.oceaneng.2015.04.088.]
2. T. Yamamoto., (1981), Moored floating breakwater response to regular and irregular waves, Journal of Applied Ocean Research. 3 27-36. [DOI:10.1016/0141-1187(81)90082-1]
3. M.Qorbani Fouladi, F. Bahmanpouri, S. Rezazadeh, F. Kollolemad, M. Mashayekhi, G. Viccione., (2023), Investigating the sidewall's effects on π-shaped floating breakwaters interacting with water waves by the scaled boundary FEM, Journal of Ocean Engineering. 284.115200. https://doi.org/10.1016/j.oceaneng.2023.115200 [DOI:10.1016/j.oceaneng.2023.115200.]
4. M. Qorbani Fouladi, H. Heidary-Torkamani, L. Tao, B. Ghiasi., (2021), Solving Wave Interaction with a Floating Breakwater in Finite Water Depth Using Scaled Boundary FEM, Numerical Methods in Civil Engineering.64249. https://doi.org/10.52547/nmce.6.1.42 [DOI:10.52547/nmce.6.1.42.]
5. C.Y. Ji, X. Chen, J. Cui, Z.M. Yuan, A. Incecik,. (2015), Experimental study of a new type of floating breakwater, Journal of Ocean Engineering,105295303. [DOI:10.1016/j.oceaneng.2015.06.046]
6. Z. Liu, Y. Wang, (2020), Numerical studies of submerged moored box-type floating breakwaters with different shapes of cross-sections using SPH, Journal of Coastal Engineering,158103687. https://doi.org/10.1016/j.coastaleng.2020.103687 [DOI:10.1016/j.coastaleng.2020.103687.]
7. K.Z. Hu, T.J. Xu, S. Wang, (2025), Hydrodynamic investigation of a new type of floating breakwaters integrated with porous baffles, Journal of Applied Ocean Research, 154 104380. [DOI:10.1016/j.apor.2024.104380]
8. Z. Deng, L. Wang, X. Zhao, Z. Huang, (2019), Hydrodynamic performance of a T-shaped floating breakwater, Journal of Applied Ocean Research, 82 325-336. https://doi.org/10.1016/j.apor.2018.11.002 [DOI:10.1016/j.apor.2018.11.002.]
9. B. Li, L. Cheng, A.J. Deeks, B. Teng, (2005), A modified scaled boundary finite-element method for problems with parallel side-faces. Part II. Application and evaluation, Journal of Applied Ocean Research. 27 224-234. https://doi.org/10.1016/j.apor.2005.11.007 [DOI:10.1016/j.apor.2005.11.007.]
10. B.Z. Zhou, G.X. Wu, Q.C. (2016), Meng, Interactions of fully nonlinear solitary wave with a freely floating vertical cylinder, Journal of Engineering Analysis with Boundary Elements.69119-131. https://doi.org/10.1016/j.enganabound.2016.05.004 [DOI:10.1016/j.enganabound.2016.05.004.]
11. A. Kang, P. Lin, Y.J. Lee, B. Zhu,. (2015), Numerical simulation of wave interaction with vertical circular cylinders of different submergences using immersed boundary method, Journal of Computers and Fluids. 106 41-53. https://doi.org/10.1016/j.compfluid.2014.09.043 [DOI:10.1016/j.compfluid.2014.09.043.]
12. S. Ganesan T., D. Sen, (2016), Time domain simulation of side-by-side floating bodies using a 3D numerical wave tank approach, Journal of Applied Ocean Research. 58 189-217. https://doi.org/10.1016/j.apor.2016.03.014 [DOI:10.1016/j.apor.2016.03.014.]
13. D. Li, V. Panchang, Z. Tang, Z. Demirbilek, J. Ramsden,. (2005), Evaluation of an approximate method for incorporating floating docks in harbor wave prediction models, Candidate Journal of Civil Engineering. 32 1082-1092. https://doi.org/10.1139/l05-059 [DOI:10.1139/l05-059.]
14. A. Cheema, M. Zhu, S. Chai, C.K.H. Chin, Y. Jin., (2014), Motion response of a floating offshore wind turbine foundation, Proc. 19th Australas. Fluid Mechanical Conference..
15. C.M. Wang, Z.Y. Tay, Very large floating structures: Applications, research and development, Journal of Procedia Engineering. 14 (2011) 62-72. https://doi.org/10.1016/j.proeng.2011.07.007 [DOI:10.1016/j.proeng.2011.07.007.]
16. A.G. Abul-Azm, M.R. Gesraha, Approximation to the hydrodynamics of floating pontoons under oblique waves, Journal of Ocean Engineering. 27 (2000) 365-384. https://doi.org/10.1016/S0029-8018(98)00057-2 [DOI:10.1016/S0029-8018(98)00057-2.]
17. M.R. Gesraha, Analysis of Π shaped floating breakwater in oblique waves: I. Impervious rigid wave boards, Appl. Journal of Ocean Research. 28 (2006) 327-338. https://doi.org/10.1016/j.apor.2007.01.002 [DOI:10.1016/j.apor.2007.01.002.]
18. M.Qorbani. Fouladi, P. Badiei, S. Vahdani, A study on full interaction of water waves with moored rectangular floating breakwater by applying 2DV scaled boundary finite element method, Journal of Ocean Engineering. 220 (2021) 108450. https://doi.org/10.1016/j.oceaneng.2020.108450 [DOI:10.1016/j.oceaneng.2020.108450.]
19. M.Qorbani. Fouladi, P. Badiei, S. Vahdani, Extracting the Solution of Three-Dimensional Wave Diffraction Problem from Two-Dimensional Analysis by Introducing an Artificial Neural Network for Floating Objects, Latin American Journal of Solids and Structures. 17 (2020) e324. https://doi.org/10.1590/1679-78256096 [DOI:10.1590/1679-78256096.]
20. S.Nemati, M. Bakhtiari, M. Azami. Investigation of Wave-Structure Interaction in Floating Breakingwaters. Journal of Hydrosciences and Environment, 5(9), 2021,8-20. [DOI:1022111/JHE.2022.42343.1079]
21. E. Koutandos, P. Prinos, and X. Gironella, Floating breakwaters under regular and irregular wave forcing: reflection and transmission characteristics. Journal of hydraulic Research, 43(2): 174-188, 2005. https://doi.org/10.1080/00221686.2005.9641234 [DOI:10.1080/00221686.2005.9641234.]
22. D.L. Kriebel and C.A. Bollmann. Wave transmission past vertical wave barriers. In COASTAL ENGINEERING CONFERENCE, 2 (1996) 2470-2483. https://doi.org/10.1061/9780784402429.191 [DOI:10.1061/9780784402429.1.]
23. F. Ursell. The effect of a fixed vertical barrier on surface waves in deep water. In Proceeding of the Cambridge Philosophical Society, 43 (1974) 374-382. https://doi.org/10.1017/S0305004100023604 [DOI:10.1017/S0305004100023604.]
24. R.L,Wigel, 1960, Transmission of waves Past a Rigid Vertical Thin Barrier, Journal of the waterways and Harbors Division, ASCE, 86 (1960), 1-12. https://doi.org/10.1061/JWHEAU.0000153 [DOI:10.1061/JWHEAU.00001.]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.