Write your message
Volume 18, Issue 36 (12-2022)                   Marine Engineering 2022, 18(36): 24-31 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zareei M R, Iranmanesh M. Ultimate Strength Assessment of Cracked Stiffened Plates Using Optimized XGBoost Method. Marine Engineering 2022; 18 (36) :24-31
URL: http://marine-eng.ir/article-1-958-en.html
1- Chabahar Maritime University
2- Amirkabir University of Technology
Abstract:   (1552 Views)
Assessing the ultimate strength of the stiffened plates forming the ship structure is the first step in assessing its ultimate strength. Over time and increase the life of the structure, failures such as cracks reduce the load-bearing capacity of the structure. The main purpose of this paper is to present a machine learning method based on XGBoost algorithm to calculate the ultimate compressive strength of stiffened plates with crack failure using the results of multiple finite element analyzes. To achieve the best possible results from the XGBoost algorithm, some of the hyperparameters in this algorithm have been optimized using the Bayesian optimization method. The results of this method show that the accuracy of using the optimized XGBoost algorithm is much higher than conventional methods based on linear regression. 
Full-Text [PDF 781 kb]   (600 Downloads)    
Type of Study: Research Paper | Subject: Ship Structure
Received: 2022/05/20 | Accepted: 2022/09/24

References
1. J. K. Paik and A. K. Thayamballi, "Ultimate strength of ageing ships," Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, vol. 216, no. 1, pp. 57-77, Jun. 2002, doi: 10.1243/147509002320382149. [DOI:10.1243/147509002320382149]
2. J. K. Paik and Y. V. Satish Kumar, "Ultimate Strength of Stiffened Panels With Cracking Damage Under Axial Compression or Tension," Journal of Ship Research, vol. 50, no. 03, pp. 231-238, Sep. 2006, doi: 10.5957/jsr.2006.50.3.231. [DOI:10.5957/jsr.2006.50.3.231]
3. Y. Hu, W. Cui, and P. Terndrup Pedersen, "Maintained ship hull xcgirxcder ultimate strength reliability considering corrosion and fatigue," Marine Structures, vol. 17, no. 2, pp. 91-123, Mar. 2004, doi: 10.1016/j.marstruc.2004.06.001. [DOI:10.1016/j.marstruc.2004.06.001]
4. J. Bai, "Time-variant ultimate strength reliability assessment of ship hulls considering corrosion and fatigue," PhD thesis, University of California, Berkeley, 2006.
5. M. R. Zareei and M. Iranmanesh, "Ultimate strength formulation of stiffened panels under in-plane compression or tension with cracking damage," J. nav. arch. mar. engg., vol. 15, no. 1, pp. 1-16, Jun. 2018, doi: 10.3329/jname.v15i1.31668. [DOI:10.3329/jname.v15i1.31668]
6. M. R. Zareei, M. R. Khedmati, and P. Rigo, "Application of artificial neural networks to the evaluation of the ultimate strength of uniaxially compressed welded stiffened aluminium plates," Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, vol. 226, no. 3, pp. 197-213, Aug. 2012, doi: 10.1177/1475090212445865. [DOI:10.1177/1475090212445865]
7. Z. ul R. Tahir and P. Mandal, "Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression," Engineering Structures, vol. 152, pp. 843-855, Dec. 2017, doi: 10.1016/j.engstruct.2017.09.016. [DOI:10.1016/j.engstruct.2017.09.016]
8. Z. ul R. Tahir, P. Mandal, M. T. Adil, and F. Naz, "Application of artificial neural network to predict buckling load of thin cylindrical shells under axial compression," Engineering Structures, vol. 248, p. 113221, Dec. 2021, doi: 10.1016/j.engstruct.2021.113221. [DOI:10.1016/j.engstruct.2021.113221]
9. Z. Sun et al., "Prediction of compression buckling load and buckling mode of hat-stiffened panels using artificial neural network," Engineering Structures, vol. 242, p. 112275, Sep. 2021, doi: 10.1016/j.engstruct.2021.112275. [DOI:10.1016/j.engstruct.2021.112275]
10. A. Kaveh, A. Dadras Eslamlou, S. M. Javadi, and N. Geran Malek, "Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders," Acta Mech, vol. 232, no. 3, pp. 921-931, Mar. 2021, doi: 10.1007/s00707-020-02878-2. [DOI:10.1007/s00707-020-02878-2]
11. M. Steurer, R. J. Hill, and N. Pfeifer, "Metrics for evaluating the performance of machine learning based automated valuation models," Journal of Property Research, vol. 38, no. 2, pp. 99-129, Apr. 2021, doi: 10.1080/09599916.2020.1858937. [DOI:10.1080/09599916.2020.1858937]
12. T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA, Aug. 2016, pp. 785-794. doi: 10.1145/2939672.2939785. [DOI:10.1145/2939672.2939785]
13. V.-H. Truong, G. Papazafeiropoulos, Q.-V. Vu, V.-T. Pham, and Z. Kong, "Predicting the patch load resistance of stiffened plate girders using machine learning algorithms," Ocean Engineering, vol. 240, p. 109886, Nov. 2021, doi: 10.1016/j.oceaneng.2021.109886. [DOI:10.1016/j.oceaneng.2021.109886]
14. "xgboost.readthedocs.io."
15. J. Guo et al., "An XGBoost-based physical fitness evaluation model using advanced feature selection and Bayesian hyper-parameter optimization for wearable running monitoring," Computer Networks, vol. 151, pp. 166-180, Mar. 2019, doi: 10.1016/j.comnet.2019.01.026. [DOI:10.1016/j.comnet.2019.01.026]
16. W. Zhang, C. Wu, H. Zhong, Y. Li, and L. Wang, "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization," Geoscience Frontiers, vol. 12, no. 1, pp. 469-477, Jan. 2021, doi: 10.1016/j.gsf.2020.03.007. [DOI:10.1016/j.gsf.2020.03.007]
17. Y. Xia, C. Liu, Y. Li, and N. Liu, "A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring," Expert Systems with Applications, vol. 78, pp. 225-241, Jul. 2017, doi: 10.1016/j.eswa.2017.02.017. [DOI:10.1016/j.eswa.2017.02.017]
18. "https://github.com/fmfn/BayesianOptimization."
19. J. Zhou, Y. Qiu, S. Zhu, D. J. Armaghani, M. Khandelwal, and E. T. Mohamad, "Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization," Underground Space, vol. 6, no. 5, pp. 506-515, Oct. 2021, doi: 10.1016/j.undsp.2020.05.008. [DOI:10.1016/j.undsp.2020.05.008]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.