1. J. K. Paik and A. K. Thayamballi, "Ultimate strength of ageing ships," Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, vol. 216, no. 1, pp. 57-77, Jun. 2002, doi: 10.1243/147509002320382149. [
DOI:10.1243/147509002320382149]
2. J. K. Paik and Y. V. Satish Kumar, "Ultimate Strength of Stiffened Panels With Cracking Damage Under Axial Compression or Tension," Journal of Ship Research, vol. 50, no. 03, pp. 231-238, Sep. 2006, doi: 10.5957/jsr.2006.50.3.231. [
DOI:10.5957/jsr.2006.50.3.231]
3. Y. Hu, W. Cui, and P. Terndrup Pedersen, "Maintained ship hull xcgirxcder ultimate strength reliability considering corrosion and fatigue," Marine Structures, vol. 17, no. 2, pp. 91-123, Mar. 2004, doi: 10.1016/j.marstruc.2004.06.001. [
DOI:10.1016/j.marstruc.2004.06.001]
4. J. Bai, "Time-variant ultimate strength reliability assessment of ship hulls considering corrosion and fatigue," PhD thesis, University of California, Berkeley, 2006.
5. M. R. Zareei and M. Iranmanesh, "Ultimate strength formulation of stiffened panels under in-plane compression or tension with cracking damage," J. nav. arch. mar. engg., vol. 15, no. 1, pp. 1-16, Jun. 2018, doi: 10.3329/jname.v15i1.31668. [
DOI:10.3329/jname.v15i1.31668]
6. M. R. Zareei, M. R. Khedmati, and P. Rigo, "Application of artificial neural networks to the evaluation of the ultimate strength of uniaxially compressed welded stiffened aluminium plates," Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, vol. 226, no. 3, pp. 197-213, Aug. 2012, doi: 10.1177/1475090212445865. [
DOI:10.1177/1475090212445865]
7. Z. ul R. Tahir and P. Mandal, "Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression," Engineering Structures, vol. 152, pp. 843-855, Dec. 2017, doi: 10.1016/j.engstruct.2017.09.016. [
DOI:10.1016/j.engstruct.2017.09.016]
8. Z. ul R. Tahir, P. Mandal, M. T. Adil, and F. Naz, "Application of artificial neural network to predict buckling load of thin cylindrical shells under axial compression," Engineering Structures, vol. 248, p. 113221, Dec. 2021, doi: 10.1016/j.engstruct.2021.113221. [
DOI:10.1016/j.engstruct.2021.113221]
9. Z. Sun et al., "Prediction of compression buckling load and buckling mode of hat-stiffened panels using artificial neural network," Engineering Structures, vol. 242, p. 112275, Sep. 2021, doi: 10.1016/j.engstruct.2021.112275. [
DOI:10.1016/j.engstruct.2021.112275]
10. A. Kaveh, A. Dadras Eslamlou, S. M. Javadi, and N. Geran Malek, "Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders," Acta Mech, vol. 232, no. 3, pp. 921-931, Mar. 2021, doi: 10.1007/s00707-020-02878-2. [
DOI:10.1007/s00707-020-02878-2]
11. M. Steurer, R. J. Hill, and N. Pfeifer, "Metrics for evaluating the performance of machine learning based automated valuation models," Journal of Property Research, vol. 38, no. 2, pp. 99-129, Apr. 2021, doi: 10.1080/09599916.2020.1858937. [
DOI:10.1080/09599916.2020.1858937]
12. T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA, Aug. 2016, pp. 785-794. doi: 10.1145/2939672.2939785. [
DOI:10.1145/2939672.2939785]
13. V.-H. Truong, G. Papazafeiropoulos, Q.-V. Vu, V.-T. Pham, and Z. Kong, "Predicting the patch load resistance of stiffened plate girders using machine learning algorithms," Ocean Engineering, vol. 240, p. 109886, Nov. 2021, doi: 10.1016/j.oceaneng.2021.109886. [
DOI:10.1016/j.oceaneng.2021.109886]
14. "xgboost.readthedocs.io."
15. J. Guo et al., "An XGBoost-based physical fitness evaluation model using advanced feature selection and Bayesian hyper-parameter optimization for wearable running monitoring," Computer Networks, vol. 151, pp. 166-180, Mar. 2019, doi: 10.1016/j.comnet.2019.01.026. [
DOI:10.1016/j.comnet.2019.01.026]
16. W. Zhang, C. Wu, H. Zhong, Y. Li, and L. Wang, "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization," Geoscience Frontiers, vol. 12, no. 1, pp. 469-477, Jan. 2021, doi: 10.1016/j.gsf.2020.03.007. [
DOI:10.1016/j.gsf.2020.03.007]
17. Y. Xia, C. Liu, Y. Li, and N. Liu, "A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring," Expert Systems with Applications, vol. 78, pp. 225-241, Jul. 2017, doi: 10.1016/j.eswa.2017.02.017. [
DOI:10.1016/j.eswa.2017.02.017]
18. "https://github.com/fmfn/BayesianOptimization."
19. J. Zhou, Y. Qiu, S. Zhu, D. J. Armaghani, M. Khandelwal, and E. T. Mohamad, "Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization," Underground Space, vol. 6, no. 5, pp. 506-515, Oct. 2021, doi: 10.1016/j.undsp.2020.05.008. [
DOI:10.1016/j.undsp.2020.05.008]