Write your message
Volume 20, Issue 44 (10-2024)                   Marine Engineering 2024, 20(44): 40-55 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ataei HassanKiadeh S, Adjami M, Gharachelo S. Determining the Effective Parameters to Investigate the Coastal Berm Changes in non-Stormy Conditions Using a Machine Learning Algorithm. Marine Engineering 2024; 20 (44) :40-55
URL: http://marine-eng.ir/article-1-1126-en.html
1- Shahrood University of Technology
2- Coasts, Ports and Marine Structures Engineering GroupDepartment of Water and Environmental EngineeringFaculty of Civil Engineering and EnvironmentalShahrood University of Technology
3- RS & GIS Engineering GroupDepartment of Water and Environmental EngineeringFaculty of Civil Engineering and EnvironmentalShahrood University of Technology
Abstract:   (336 Views)
With the advancement of machine learning and algorithms and the establishment of research sites in coastal areas, valuable information has become available that can be utilized in the development of coastal engineering. This study attempts to examine the coastal area of Narrabeen, Australia with a new approach using machine learning. One of the most important factors in understanding coastal behavior is its self-reconstruction under non-stormy and long-term conditions. Recognizing and describing the phenomena affecting the equilibrium performance of the coast is also of great significance. After sorting the initial data, the best behavioral pattern was examined using a regression decision tree algorithm by evaluating the combination of error and model complexity, and the most appropriate scenarios were selected to describe the influencing parameters on objective functions (shoreline changes and coastal platform geometry). Accordingly, to describe shoreline changes, ∆BW, Berm Slope, SLR, and ζ were considered with values of R2=82% and RMSE=3.489 meters; to describe changes in the elevation of the coastal platform, BC Height, ∆x Shoreline, ∆x BC, and P were considered with values of R2=48% and RMSE=0.397 meters; and to describe the horizontal position of the coastal platform crest, BW, Berm Slope, ∆y BC, BC Height, E, and SLR were considered with values of R2=67% and RMSE=9.807 meters. According to the results of the description and the impact of hydrodynamic and morphodynamic phenomena using the regression decision tree method and the obtained error values ​​and coefficient of determination, it can be stated that this method is suitable and reliable for understanding the governing phenomena on coastal features; Based on this, in order to investigate the morphodynamic changes of the coastal platform and to understand its equilibrium behavior, its geometric shape and initial slope play a significant role.
Full-Text [PDF 2504 kb]   (136 Downloads)    
Type of Study: Research Paper | Subject: Environmental Study
Received: 2024/09/12 | Accepted: 2024/12/14

References
1. Paprotny, D., Terefenko, P., Giza, A., Czapliński, P. and Vousdoukas, M.I. 2021. Future losses of ecosystem services due to coastal erosion in Europe. Science of The Total Environment, 760, 144310. [DOI:10.1016/j.scitotenv.2020.144310] [PMID]
2. Flor-Blanco, G., Alcántara-Carrió, J., Jackson, D.W.T., Flor, G. and Flores-Soriano, C. 2021. Coastal erosion in NW Spain: Recent patterns under extreme storm wave events. Geomorphology, 387, 107767. [DOI:10.1016/j.geomorph.2021.107767]
3. Harley, M.D., Masselink, G., Ruiz de Alegría-Arzaburu, A., Valiente, N.G. and Scott, T. 2022. Single extreme storm sequence can offset decades of shoreline retreat projected to result from sea-level rise. Communications Earth & Environment, 3, 112. [DOI:10.1038/s43247-022-00437-2]
4. Grossmann, F., Hurther, D., Sánchez‐Arcilla, A. and Alsina, J.M. 2023. Influence of the Initial Beach Profile on the Sediment Transport Processes During Post-Storm Onshore Bar Migration. Journal of Geophysical Research: Oceans, 128, e2022JC019299. [DOI:10.1029/2022JC019299]
5. Heminway, S. S., Davis, E. H., Cohn, N., Skaden, J., Anderson, D. & Hein, C. J. 2023. MODELED CHANGES IN FOREDUNE MORPHOLOGY INFLUENCED BY VARIABLE STORM INTENSITY AND SEA-LEVEL RISE. Coastal Sediments 2023. WORLD SCIENTIFIC. [DOI:10.1142/9789811275135_0064]
6. Yin, C., Anh, D.T., Mai, S.T., Le, A., Nguyen, V.H., Nguyen, V.C., Tinh, N.X., Tanaka, H., Viet, N.T., Nguyen, L.D. and Duong, T.Q. 2021. Advanced Machine Learning Techniques for Predicting Nha Trang Shorelines. IEEE Access, 9, 98132-98149. [DOI:10.1109/ACCESS.2021.3095339]
7. Rodriguez-Galiano, V., Guisado-Pintado, E., Prieto-Campos, A. and Ojeda-Zujar, J. 2022. A machine-learning hybrid-classification method for stratification of multidecadal beach dynamics. Geocarto International, 37, 16534-16558. [DOI:10.1080/10106049.2022.2110616]
8. Senechal, N., Peron, C. & Coco, G. 2023. ON THE USE OF ARTIFICIAL NEURAL NETWORKS TO EXPLORE MORPHOLOGICAL AND HYDRODYNAMIC PARAMETERS IN SHORELINE DYNAMICS. Coastal Sediments 2023. WORLD SCIENTIFIC. [DOI:10.1142/9789811275135_0036]
9. La Pena, E. G.-D., Coco, G., Whittaker, C. & Montano, J. 2023. A CONVOLUTIONAL NEURAL NETWORK MODEL FOR SHORELINE CHANGE PREDICTION. Coastal Sediments 2023. WORLD SCIENTIFIC. [DOI:10.1142/9789811275135_0127]
10. Goldstein, E.B., Coco, G. and Plant, N.G. 2019. A review of machine learning applications to coastal sediment transport and morphodynamics. Earth-Science Reviews, 194, 97-108. [DOI:10.1016/j.earscirev.2019.04.022]
11. Beuzen, T. and Splinter, K. 2020. 28 - Machine learning and coastal processes. In:JACKSON, D. W. T. & SHORT, A. D. (eds.) Sandy Beach Morphodynamics. Elsevier. [DOI:10.1016/B978-0-08-102927-5.00028-X]
12. Shafaghat, M. and Dezvareh, R. 2021. Support vector machine for classification and regression of coastal sediment transport. Arabian Journal of Geosciences, 14, 2009. [DOI:10.1007/s12517-021-08360-0]
13. Casarosa, N., Luppichini, M., Bini, M., BERTON, A., MERLINO, S. and Paterni, M. 2022. A method based on beach profile analysis for shoreline identification. Ninth International Symposium "Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques". Firenze University Press. [DOI:10.36253/979-12-215-0030-1.05]
14. Pradeep, J., Shaji, E., Chandran, S., Ajas, H., Chandra, S.V., Dev, S.D. and Babu, D.S. 2022. Assessment of coastal variations due to climate change using remote sensing and machine learning techniques: A case study from west coast of India. Estuarine, Coastal and Shelf Science, 275, 107968. [DOI:10.1016/j.ecss.2022.107968]
15. Chen, H., Yunus, A.P., Nukapothula, S. and Avtar, R. 2022. Modelling Arctic coastal plain lake depths using machine learning and Google Earth Engine. Physics and Chemistry of the Earth, Parts A/B/C, 126, 103138. [DOI:10.1016/j.pce.2022.103138]
16. McAllister, E., Payo, A., Novellino, A., Dolphin, T. and Medina-Lopez, E. 2022. Multispectral satellite imagery and machine learning for the extraction of shoreline indicators. Coastal Engineering, 174, 104102. [DOI:10.1016/j.coastaleng.2022.104102]
17. Xu, G., Wei, H., Xue, S., Wang, J. and Li, Y. 2022. Predicting wave forces on coastal bridges using genetic algorithm enhanced ensemble learning framework. Ocean Engineering, 266, 112963. [DOI:10.1016/j.oceaneng.2022.112963]
18. Ferchichi, H., St-Hilaire, A., Ouarda, T.B. and Lévesque, B. 2022. Prediction of Coastal Water Temperature Using Statistical Models. Estuaries and Coasts, 45, 1909-1927. [DOI:10.1007/s12237-022-01070-0]
19. Bellinghausen, K., Hunicke, B. and Zorita, E. 2023. Short-term prediction of extreme sea-level at the Baltic Sea coast by Random Forests. Nat. Hazards Earth Syst. Sci. Discuss., 2023, 1-48. [DOI:10.5194/nhess-2023-21]
20. Billet, C., Bacino, G., Alonso, G. and Dragani, W. 2023. Shoreline Temporal Variability Inferred from Satellite Images at Mar del Plata, Argentina. Water [Online], 15. [DOI:10.3390/w15071299]
21. DALINGHAUS, C., COCO, G. and HIGUERA, P. 2023. USING GENETIC PROGRAMMING FOR ENSEMBLE PREDICTIONS OF WAVE SETUP. Coastal Sediments 2023. WORLD SCIENTIFIC. [DOI:10.1142/9789811275135_0177]
22. Turner, I.L., Harley, M.D., Short, A.D., Simmons, J.A., Bracs, M.A., Phillips, M.S. and Splinter, K.D. 2016. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia. Scientific Data, 3, 160024. [DOI:10.1038/sdata.2016.24] [PMID] []
23. Splinter, K.D., Harley, M.D. and Turner, I.L. 2018. Remote Sensing Is Changing Our View of the Coast: Insights from 40 Years of Monitoring at Narrabeen-Collaroy, Australia. Remote Sensing [Online], 10. [DOI:10.3390/rs10111744]
24. Jaramillo, C., González, M., Medina, R. and Turki, I. 2021. An equilibrium-based shoreline rotation model. Coastal Engineering, 163, 103789. [DOI:10.1016/j.coastaleng.2020.103789]
25. Jaramillo, C., Jara, M.S., Gonzalez, M. and Medina, R. 2021. A shoreline evolution model for embayed beaches based on cross-shore, planform and rotation equilibrium models. Coastal Engineering, 169, 103983. [DOI:10.1016/j.coastaleng.2021.103983]
26. Chataigner, T., Yates, M.L., Le Dantec, N., Harley, M.D., Splinter, K.D. and Goutal, N. 2022. Sensitivity of a one-line longshore shoreline change model to the mean wave direction. Coastal Engineering, 172, 104025. [DOI:10.1016/j.coastaleng.2021.104025]
27. Beuzen, T., Splinter, K.D., Marshall, L.A., Turner, I.L., Harley, M.D. and Palmsten, M.L. 2018. Bayesian Networks in coastal engineering: Distinguishing descriptive and predictive applications. Coastal Engineering, 135, 16-30. [DOI:10.1016/j.coastaleng.2018.01.005]
28. Zeinali, S., Dehghani, M. and Talebbeydokhti, N. 2021. Artificial neural network for the prediction of shoreline changes in Narrabeen, Australia. Applied Ocean Research, 107, 102362. [DOI:10.1016/j.apor.2020.102362]
29. Beuzen, T., Marshall, L. and Splinter, K.D. 2018. A comparison of methods for discretizing continuous variables in Bayesian Networks. Environmental Modelling & Software, 108, 61-66. [DOI:10.1016/j.envsoft.2018.07.007]
30. Oerlemans, S.C., Nijland, W., Ellenson, A.N. and Price, T.D. 2022. Image-Based Classification of Double-Barred Beach States Using a Convolutional Neural Network and Transfer Learning. Remote Sensing [Online], 14. [DOI:10.3390/rs14194686]
31. Harley, M., Ibaceta, R., Leaman, C., Splinter, K. & Turner, I. A. N. 2023. DATA-DRIVEN MODELING OF COASTAL STORM EROSION: NARRABEEN BEACH, AUSTRALIA. Coastal Sediments 2023. WORLD SCIENTIFIC. [DOI:10.1142/9789811275135_0028]
32. Kantardzic, M. 2019. Data Mining: Concepts, Models, Methods, and Algorithms, 3rd Edition, Wiley-IEEE Press. [DOI:10.1002/9781119516057]
33. Breiman, L. 1984. Classification and Regression Trees (1st ed.). Routledge. [DOI:10.1201/9781315139470]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.