1. Paprotny, D., Terefenko, P., Giza, A., Czapliński, P. and Vousdoukas, M.I. 2021. Future losses of ecosystem services due to coastal erosion in Europe. Science of The Total Environment, 760, 144310. [
DOI:10.1016/j.scitotenv.2020.144310] [
PMID]
2. Flor-Blanco, G., Alcántara-Carrió, J., Jackson, D.W.T., Flor, G. and Flores-Soriano, C. 2021. Coastal erosion in NW Spain: Recent patterns under extreme storm wave events. Geomorphology, 387, 107767. [
DOI:10.1016/j.geomorph.2021.107767]
3. Harley, M.D., Masselink, G., Ruiz de Alegría-Arzaburu, A., Valiente, N.G. and Scott, T. 2022. Single extreme storm sequence can offset decades of shoreline retreat projected to result from sea-level rise. Communications Earth & Environment, 3, 112. [
DOI:10.1038/s43247-022-00437-2]
4. Grossmann, F., Hurther, D., Sánchez‐Arcilla, A. and Alsina, J.M. 2023. Influence of the Initial Beach Profile on the Sediment Transport Processes During Post-Storm Onshore Bar Migration. Journal of Geophysical Research: Oceans, 128, e2022JC019299. [
DOI:10.1029/2022JC019299]
5. Heminway, S. S., Davis, E. H., Cohn, N., Skaden, J., Anderson, D. & Hein, C. J. 2023. MODELED CHANGES IN FOREDUNE MORPHOLOGY INFLUENCED BY VARIABLE STORM INTENSITY AND SEA-LEVEL RISE. Coastal Sediments 2023. WORLD SCIENTIFIC. [
DOI:10.1142/9789811275135_0064]
6. Yin, C., Anh, D.T., Mai, S.T., Le, A., Nguyen, V.H., Nguyen, V.C., Tinh, N.X., Tanaka, H., Viet, N.T., Nguyen, L.D. and Duong, T.Q. 2021. Advanced Machine Learning Techniques for Predicting Nha Trang Shorelines. IEEE Access, 9, 98132-98149. [
DOI:10.1109/ACCESS.2021.3095339]
7. Rodriguez-Galiano, V., Guisado-Pintado, E., Prieto-Campos, A. and Ojeda-Zujar, J. 2022. A machine-learning hybrid-classification method for stratification of multidecadal beach dynamics. Geocarto International, 37, 16534-16558. [
DOI:10.1080/10106049.2022.2110616]
8. Senechal, N., Peron, C. & Coco, G. 2023. ON THE USE OF ARTIFICIAL NEURAL NETWORKS TO EXPLORE MORPHOLOGICAL AND HYDRODYNAMIC PARAMETERS IN SHORELINE DYNAMICS. Coastal Sediments 2023. WORLD SCIENTIFIC. [
DOI:10.1142/9789811275135_0036]
9. La Pena, E. G.-D., Coco, G., Whittaker, C. & Montano, J. 2023. A CONVOLUTIONAL NEURAL NETWORK MODEL FOR SHORELINE CHANGE PREDICTION. Coastal Sediments 2023. WORLD SCIENTIFIC. [
DOI:10.1142/9789811275135_0127]
10. Goldstein, E.B., Coco, G. and Plant, N.G. 2019. A review of machine learning applications to coastal sediment transport and morphodynamics. Earth-Science Reviews, 194, 97-108. [
DOI:10.1016/j.earscirev.2019.04.022]
11. Beuzen, T. and Splinter, K. 2020. 28 - Machine learning and coastal processes. In:JACKSON, D. W. T. & SHORT, A. D. (eds.) Sandy Beach Morphodynamics. Elsevier. [
DOI:10.1016/B978-0-08-102927-5.00028-X]
12. Shafaghat, M. and Dezvareh, R. 2021. Support vector machine for classification and regression of coastal sediment transport. Arabian Journal of Geosciences, 14, 2009. [
DOI:10.1007/s12517-021-08360-0]
13. Casarosa, N., Luppichini, M., Bini, M., BERTON, A., MERLINO, S. and Paterni, M. 2022. A method based on beach profile analysis for shoreline identification. Ninth International Symposium "Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques". Firenze University Press. [
DOI:10.36253/979-12-215-0030-1.05]
14. Pradeep, J., Shaji, E., Chandran, S., Ajas, H., Chandra, S.V., Dev, S.D. and Babu, D.S. 2022. Assessment of coastal variations due to climate change using remote sensing and machine learning techniques: A case study from west coast of India. Estuarine, Coastal and Shelf Science, 275, 107968. [
DOI:10.1016/j.ecss.2022.107968]
15. Chen, H., Yunus, A.P., Nukapothula, S. and Avtar, R. 2022. Modelling Arctic coastal plain lake depths using machine learning and Google Earth Engine. Physics and Chemistry of the Earth, Parts A/B/C, 126, 103138. [
DOI:10.1016/j.pce.2022.103138]
16. McAllister, E., Payo, A., Novellino, A., Dolphin, T. and Medina-Lopez, E. 2022. Multispectral satellite imagery and machine learning for the extraction of shoreline indicators. Coastal Engineering, 174, 104102. [
DOI:10.1016/j.coastaleng.2022.104102]
17. Xu, G., Wei, H., Xue, S., Wang, J. and Li, Y. 2022. Predicting wave forces on coastal bridges using genetic algorithm enhanced ensemble learning framework. Ocean Engineering, 266, 112963. [
DOI:10.1016/j.oceaneng.2022.112963]
18. Ferchichi, H., St-Hilaire, A., Ouarda, T.B. and Lévesque, B. 2022. Prediction of Coastal Water Temperature Using Statistical Models. Estuaries and Coasts, 45, 1909-1927. [
DOI:10.1007/s12237-022-01070-0]
19. Bellinghausen, K., Hunicke, B. and Zorita, E. 2023. Short-term prediction of extreme sea-level at the Baltic Sea coast by Random Forests. Nat. Hazards Earth Syst. Sci. Discuss., 2023, 1-48. [
DOI:10.5194/nhess-2023-21]
20. Billet, C., Bacino, G., Alonso, G. and Dragani, W. 2023. Shoreline Temporal Variability Inferred from Satellite Images at Mar del Plata, Argentina. Water [Online], 15. [
DOI:10.3390/w15071299]
21. DALINGHAUS, C., COCO, G. and HIGUERA, P. 2023. USING GENETIC PROGRAMMING FOR ENSEMBLE PREDICTIONS OF WAVE SETUP. Coastal Sediments 2023. WORLD SCIENTIFIC. [
DOI:10.1142/9789811275135_0177]
22. Turner, I.L., Harley, M.D., Short, A.D., Simmons, J.A., Bracs, M.A., Phillips, M.S. and Splinter, K.D. 2016. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia. Scientific Data, 3, 160024. [
DOI:10.1038/sdata.2016.24] [
PMID] [
]
23. Splinter, K.D., Harley, M.D. and Turner, I.L. 2018. Remote Sensing Is Changing Our View of the Coast: Insights from 40 Years of Monitoring at Narrabeen-Collaroy, Australia. Remote Sensing [Online], 10. [
DOI:10.3390/rs10111744]
24. Jaramillo, C., González, M., Medina, R. and Turki, I. 2021. An equilibrium-based shoreline rotation model. Coastal Engineering, 163, 103789. [
DOI:10.1016/j.coastaleng.2020.103789]
25. Jaramillo, C., Jara, M.S., Gonzalez, M. and Medina, R. 2021. A shoreline evolution model for embayed beaches based on cross-shore, planform and rotation equilibrium models. Coastal Engineering, 169, 103983. [
DOI:10.1016/j.coastaleng.2021.103983]
26. Chataigner, T., Yates, M.L., Le Dantec, N., Harley, M.D., Splinter, K.D. and Goutal, N. 2022. Sensitivity of a one-line longshore shoreline change model to the mean wave direction. Coastal Engineering, 172, 104025. [
DOI:10.1016/j.coastaleng.2021.104025]
27. Beuzen, T., Splinter, K.D., Marshall, L.A., Turner, I.L., Harley, M.D. and Palmsten, M.L. 2018. Bayesian Networks in coastal engineering: Distinguishing descriptive and predictive applications. Coastal Engineering, 135, 16-30. [
DOI:10.1016/j.coastaleng.2018.01.005]
28. Zeinali, S., Dehghani, M. and Talebbeydokhti, N. 2021. Artificial neural network for the prediction of shoreline changes in Narrabeen, Australia. Applied Ocean Research, 107, 102362. [
DOI:10.1016/j.apor.2020.102362]
29. Beuzen, T., Marshall, L. and Splinter, K.D. 2018. A comparison of methods for discretizing continuous variables in Bayesian Networks. Environmental Modelling & Software, 108, 61-66. [
DOI:10.1016/j.envsoft.2018.07.007]
30. Oerlemans, S.C., Nijland, W., Ellenson, A.N. and Price, T.D. 2022. Image-Based Classification of Double-Barred Beach States Using a Convolutional Neural Network and Transfer Learning. Remote Sensing [Online], 14. [
DOI:10.3390/rs14194686]
31. Harley, M., Ibaceta, R., Leaman, C., Splinter, K. & Turner, I. A. N. 2023. DATA-DRIVEN MODELING OF COASTAL STORM EROSION: NARRABEEN BEACH, AUSTRALIA. Coastal Sediments 2023. WORLD SCIENTIFIC. [
DOI:10.1142/9789811275135_0028]
32. Kantardzic, M. 2019. Data Mining: Concepts, Models, Methods, and Algorithms, 3rd Edition, Wiley-IEEE Press. [
DOI:10.1002/9781119516057]
33. Breiman, L. 1984. Classification and Regression Trees (1st ed.). Routledge. [
DOI:10.1201/9781315139470]