Write your message

XML Persian Abstract Print


1- Malek Ashtar University of Technology
2- Faculty of Mechanics, Malek Ashtar University of Technology
Abstract:   (155 Views)
One of the most important issues in designing a submarine is calculating its resistance and power. It is still a scientific challenge to calculate and generalize the results from a scaled model to the main vessel. In this study, the effect of the scale in a numerical method on the resistance coefficients of a submarine, including the total, friction and pressure resistance coefficients, has been investigated by numerical simulation method. Also, the accuracy of the results of the existing empirical relationships for calculating submarine resistance coefficients has been evaluated. The SUBOFF submarine model was used to conduct studies. The results show that the existing empirical relationships enable the calculation of the friction coefficient with an error of less than 10%, the pressure coefficient with an error of less than 30%, and the total drag coefficient with an error of less than 8.5%.
Full-Text [PDF 1887 kb]   (60 Downloads)    
Type of Study: Research Paper | Subject: Submarine Hydrodynamic & Design
Received: 2024/05/11 | Accepted: 2024/07/30

References
1. S. Savas, D. Ali, D. Cihad, and B. Sakir , (2018). Investigation of self-propulsion of DARPA Suboff by RANS method, Ocean Engineering,vol.150,pp.1-14. https://doi.org/10.1016/j.oceaneng.2017.12.051 [DOI:10.1016/j.oceaneng.2017.12.051.]
2. S. B. Furkan Cavdar, (2022). An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth, GMO Journal of Ship and Marine Technology, no. 221. https://doi.org/10.54926/gdt.1084413 [DOI:10.54926/gdt.1084413.]
3. W. Sun, Q. Hu, S. Hu, J. Su, J. Xu, J. Wei and G. Huang, (2020). Numerical analysis of fullscale ship self-propulsion performance with direct comparison to statistical sea trail results, Journal of Marine Science Engineering, p. 24. https://doi.org/10.3390/jmse8010024 [DOI:10.3390/jmse8010024.]
4. H. Jasak, V. Vukˇcevi'c, I. Gatin and I. Lalovi'c, (2019). CFD validation and grid sensitivity studies of full scale ship self propulsion, Journal of Naval Architecture and Ocean Engineering, pp. 33-43. https://doi.org/10.1016/j.ijnaoe.2017.12.004 [DOI:10.1016/j.ijnaoe.2017.12.004.]
5. V. Bertram, Practical Ship Hydrodynamics, (2014). 2 ed., Elsevier Science.
6. L. Larsson, F. Stern and M. Visonneau, (2014). Numerical Ship Hydrodynamics, Netherlands, Dordrecht: Springer. [DOI:10.1007/978-94-007-7189-5]
7. D. Ponkratov and C. Zegos,(2015). Validation of ship scale CFD self-propulstion simulation by the direct comparison with sea trials results, in Forth International Symposium on Marine Propulsors, Austin.
8. H. A. Jackson, Submarine Design Notes, (1980). Massachusetts Institute of Technology.
9. H. Mikkelsen and J. H. Walther, (2020). Effect of roughness in full-scale validation of a CFD model of self-propelled ships, Applied Ocean Research, vol. 99. https://doi.org/10.1016/j.apor.2020.102162 [DOI:10.1016/j.apor.2020.102162.]
10. M. Moonesun , Y. M. Korol , V. A. Nikrasov , A. Ursalov , A. Brajhko, (2016). CFD analysis of the bow shapes of submarines, Journal of Scientific and Engineering Research, vol. III, no. 1, pp. 1-16, 2016. https://jsaer.com/download/vol-3-iss-1-2016/JSAER2016-03-01-01-16.pdf.
11. M. Moonesun , Y. M. Korol , V. A. Nikrasov , A. Ursalov , A. Brajhko, (2015). Power series optimization for submarine bare hull form, Turkish Journal of Engineering, Science and Technology, vol. 1, pp. 11-19.
12. Y. M. Korol, M Moonesun, (2015). Minimum Immersion Depth for EliminatingFree Surface Effect on Submerged Submarine Resistance, Turkish Journal of Engineering, Science and Technology (TUJEST), vol. 3, no. 1, pp. 36-46.
13. M. Moonesun , Y. M. Korol , V. A. Nikrasov , A. Ursalov , A. Brajhko, (2016).Bottom effect on the submarine moving close to the sea bottom, The Journal of Scientific and Engineering Research, vol. 6, no. 1, pp. 106-113. https://www.researchgate.net/publication/331001062_Bottom_effect_on_the_submarine_moving_close_to_the_sea_bottom.
14. P. C. Mohammad Moonesun, 2012. General arrangement and naval architecture aspects in midget submarines, in Proceedings of the 4th International Conference on Underwater System Technology Theory and Applications, Malaysia.
15. M. Moonesun, F. Ghasemzadeh,3 Y.Korol, N. Valeri,1 A. Yastreba, A.Ursalov (2017), Effective depth of regular wave on submerged submarines and AUVs, International Robotics & Automation Journal, vol. 2, no. 6, pp. 208-216. DOI: 10.15406/iratj.2017.02.00037. [DOI:10.15406/iratj.2017.02.00037]
16. M.Moonesun, Y. M. Korol, S.H. Moosavizadegan, H. Dalayeli, A. Mahdian, M. Javadi, A. Brazhko, (2016). Wave making system in submarines at surface condition, NISCAIR-CSIR,India. https://nopr.niscpr.res.in/bitstream/123456789/34858/1/IJMS%2045(1)%2044-53.pdf
17. T. Aliakbari , M. Adjami, M. Moonesun , ,(2023). An experimental study of stabilizing ordinary fishing nets (SOFNets) on a stationary SWATH ship seakeeping behavior under irregular waves, Ocean Engineering, vol. 283, pp. 115-191. https://doi.org/10.1016/j.oceaneng.2023.115191 [DOI:10.1016/j.oceaneng.2023.115191.]
18. E. Asadi Asrami, M. Moonesun,F. Aziz Abi,(2021). Computational fluid dynamics and experimental hydrodynamic analysis of a solar AUV. Computer Assisted Methods in Engineering and Science, vol. 28, no. 1, pp. 57-77. DOI:10.24423/cames.301
19. N. Khanmoradi , M.Moonesun, S. Jafari Horestani, (2023). Calculation of Hydrodynamics Resistance Coefficient of Diver by CFD Method, Journal of Hydraulic and Water Engineering, vol. 1, no. 1, pp. 99-107. DOI: 10.61186/ijmt.18.15. [DOI:10.61186/ijmt.18.15]
20. E. Asadi Asrami, S. Ardeshiri M. Adjami M. Moonesun,(2023). Experimental Results of an Underwater Glider Hydraulic Model Test in Towing Tank of NIMALA, Journal of Hydraulic and Water Engineering, vol. 1, no. 1, pp. 31-40 . DOI:10.22044/JHWE.2023.12852.1006.
21. N. Khanmoradi , M.Moonesun, S. Jafari Horestani,(2023), Calculation of Hydrodynamics Resistance Coefficient of Diver by CFD Method at Free Surface Condition, International Journal of Maritime Technology, vol. 18, pp. 15-24, 2023. DOI: 10.61186/ijmt.18.15 [DOI:10.61186/ijmt.18.15]
22. A Gharechae, M.Moonesun, (2023) , Semi-analytical study of linear waves interaction with a vertical permeable cylinder of arbitrary cross-section based on perturbation theory, Ships and Offshore Structures, vol. 19, no. 5, pp. 645-669. https://doi.org/10.1080/17445302.2023.2200335 [DOI:10.1080/17445302.2023.220033.]
23. Julia Bodnarchuk, Y. Karol, M.Moonesun, (2020). A Study of the Effect of Recesses on the Motion Resistance of Submarines by Methods of Computational Fluid Dynamics," Восточно-Европейский журнал передовых технологий, vol. 5, no. 7-107, pp. 82-88. doi: 10.15587/1729-4061.2020.212005. [DOI:10.15587/1729-4061.2020.212005]
24. M. Moonesun, Y. Karol. H. Dalayeli, (2015). CFD analysis on the bare hull form of submarines for minimizing the resistance, International Journal of Maritime Technology, vol. 3, pp. 1-16. DOI: 20.1001.1.23456000.2015.3.0.6.8
25. Y. Karol. M. Moonesan, (2015). Naval Submarine Body Form Design and Hydrodynamics, Germany: Lap Lambert Academic Publishing.
26. A.F. Molland, S.R. Turnock, D.A. Hudson, (2017). Ship Resistance And Propulsion, Cambridge, United Kingdom: Cambridge University Press https://doi.org/10.1017/9781316494196 [DOI:10.1017/9781316494196.]
27. L. Birk, (2019). Fundamentals of Ship Hydrodynamics, Padstow, Cornwall, Great Britain: John Wiley & Sons Ltd. DOI:10.1002/9781119191575. [DOI:10.1002/9781119191575]
28. • V. Bertram, (2012).Submarine hull design, Engineering, Environmental Science.
29. S. F. HOERNER, (1965). Fluid-Dynamic Drag Practical Information On Aerodynamic Drag And Hydrodynamic Resistance, Bakersfield, CA, USA: Published by the Author.
30. H. Blasius, (1950). The Boundary Layers In Fluids with Little Friction, National Advisory Committee for Aeronautics.
31. X. Ling, Zhi, Q. Leong, J. Duffy,(2023). Effects of pitch angle on a near free surface underwater vehicle, Ocean Engineering, p. 115611. https://doi.org/10.1016/j.oceaneng.2023.115611 [DOI:10.1016/j.oceaneng.2023.115611.]
32. R. H. Nunn, (1989). Intermediate Fluid Mechanics, 270 Madison Avenue New York, NY 10016: Taylor & Francis Group.
33. P. M. Sforza, (2014). Commercial Airplane Design Principles, Butterworth-Heinemann. [DOI:10.1016/B978-0-12-419953-8.00005-X]
34. K. G. Hermann Schlichting, (2017). Boundary-Layer Theory, 9 ed., vol. 1, K. Mayes, Ed., Springer. https://doi.org/10.1007/978-3-662-52919-5 [DOI:10.1007/978-3-662-52919-5.]
35. A.Morrall, (1957), 1957 Ittc Model-Shipcorrelation Line Values Offrictional Resistancecoefficient.
36. F. M. White, (2016). Mechanics Fluid, New York, USA: McGraw-Hill Education.
37. D. C. Wilcox, (2006). Turbulence Modeling for CFD In: Industries, 3 ed., Canada: D.C.W.
38. ITTC(2017), Uncertainty Analysis is CFD Verification and Validation, Methodology and Procedures.
39. P. J. Roache,(1998). Verification Of Codes And Calculations, AIAA JOURNAL, vol. 36, May. [DOI:10.2514/3.13882]
40. T. Tezdogan, Y. K. Demirel, P. Kellett, M. Khorasanchi, A. Incecik and O. Turan, (2015). Full-scale unsteady RANS CFD simulations of ship behaviour and performance inhead seas due to slow steaming, Ocean Engineering, pp. 186-206. https://doi.org/10.1016/j.oceaneng.2015.01.011 [DOI:10.1016/j.oceaneng.2015.01.011.]
41. Y. H. Ozdemir, T. Cosgun, A. Dogrul and B. Barlas, 2016. A numerical application to predict the resistance and wave pattern of KRISO container ship, Brodogradnja, vol. 67, pp.47-65. https://doi.org/10.21278/brod67204 [DOI:10.21278/brod67204.]
42. N. C. Groves, T. T. Huang and M. S. Chang, (1989). Geometric characteristics of darpa suboff models (dtrc model nos. 5470 and 5471).
43. ITTC, (2011). Recommended Procedures and Guidlines Resistance Test.
44. O. F. S. Omer K Kinaci and S. Bal, (2016). Prediction of wave resistance by aReynolds-averaged Navier-Stokes equation-based computational fluiddynamics approach, J Engineering for the Maritime Environment, pp.1-18,June. DOI:10.1177/1475090215599180 [DOI:10.1177/1475090215599180]
45. C. L. Warren, (1997). Submarine design optimization using boundary layer control.
46. D. Ponkratov, (2016). Lloyd's Register Workshop on Ship Scale Hydrodynamics, UK.
47. C. D. A. D. M. A. Savas Sezen, (2021). An investigation of scale effects on the self-propulsion characteristics of a submarine, Applied Ocean Research, vol. 113, pp. 1-17. https://doi.org/10.1016/j.apor.2021.102728 [DOI:10.1016/j.apor.2021.102728.]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.