Write your message
Volume 19, Issue 40 (11-2023)                   Marine Engineering 2023, 19(40): 30-42 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asil Gharebaghi S, Shirzad M. Numerical study of the dynamic behavior of cylinders with nonlinear support exposed to flow. Marine Engineering 2023; 19 (40) :30-42
URL: http://marine-eng.ir/article-1-1050-en.html
1- Civil Engineering Faculty, K. N. Toosi University of Technology
Abstract:   (669 Views)
Vortex-induced vibrations may cause chaotic behavior in offshore structures. Chaos reduces the life of these structures by causing fatigue. In this research, assuming a nonlinear support, the dynamic behavior of these structures has been investigated. The support nonlinearity was changed by using different types of springs. The displacement and lift force signals were obtained by simultaneously solving the two-dimensional Reynolds averaged Navier-Stokes equations and the cylinder motion equation. Then, chaos detection tests were applied to the signals. The results show that the behavior of the system consists of two branches. The second branch's amplitude is multiple times the amplitude of the first branch. At the starting point of the second branch, the cylinder behavior and the lift force are chaotic. As the support nonlinearity increases, the length of the second branch decreases, but the degree of chaotic behavior of the cylinder and the lift force increases.
 
Full-Text [PDF 1921 kb]   (159 Downloads)    
Type of Study: Research Paper | Subject: CFD
Received: 2023/07/12 | Accepted: 2023/10/5

References
1. [1] Wang, Y., Wu, Z., Zhang, G., Li, Y. and Wang, F., (2020), Bifurcation phenomenon and multi-stable behavior in vortex-induced vibration of top tension riser in shear flow, JVC/Journal of Vibration and Control, vol. 26, p. 659-670. [DOI:10.1177/1077546319889856]
2. [2] Jauvtis, N. and Williamson, C. H. K., (2003), Vortex-induced vibration of a cylinder with two degrees of freedom, Journal of Fluids and Structures, vol. 17, p. 1035-1042. [DOI:10.1016/S0889-9746(03)00051-3]
3. [3] Imaoka, K., Kobayashi, Y., Emaru, T. and Hoshino, Y., (2015), Vortex-Induced Vibration of an Elastically-Supported Cylinder Considering Random Flow Effects, SICE Journal of Control, Measurement, and System Integration, vol. 8, p. 131-138. [DOI:10.9746/jcmsi.8.131]
4. [4] Siewe Siewe, M. and Xia, X., (2012), Nonlinear dynamics and small damping signal control of chaos in a model of flow-induced oscillations of cylinders, Mechanics Research Communications, vol. 46, pp. 8-14. [DOI:10.1016/j.mechrescom.2012.08.004]
5. [5] Gopalkrishnan R., (1993), Vortex-Induced Forces on Oscillating Bluff Cylinders.
6. [6] Modarres-Sadeghi, Y., Chasparis, F., Triantafyllou, M. S., Tognarelli, M. and Beynet, P., (2011), Chaotic response is a generic feature of vortex-induced vibrations of flexible risers, Journal of Sound and Vibration, vol. 330, p. 2565-2579. [DOI:10.1016/j.jsv.2010.12.007]
7. [7] Plaschko, P., Berger, E. and Brod, K., (1993), The transition of flow-induced cylinder vibrations to chaos, Nonlinear Dynamics, vol. 4, p. 251-268. [DOI:10.1007/BF00046323]
8. [8] Leontini, J. S., Thompson, M. C. and Hourigan, K., (2006), The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow, Journal of Fluids and Structures, vol. 22, p. 857-864. [DOI:10.1016/j.jfluidstructs.2006.04.003]
9. [9] Blackburn, H. and Henderson, R., (1996), Lock-in behavior in simulated vortex-induced vibration, Experimental Thermal and Fluid Science, vol. 12, p. 184-189. [DOI:10.1016/0894-1777(95)00093-3]
10. [10] Leontini, J. and Thompson, M., (2008), Chaotic oscillation during vortex-induced vibration, 22nd International Congress of Theoretical and Applied Mechanics, p. 1-2.
11. [11] Gaurier, B., Cebron, D. and Germain, G., (2008), Vortex-induced vibrations using wake oscillator model. Comparison on 2D response with experiments, 9th International Conference on Flow-Induced Vibrations (FIV2008), Prague, République Tchèque.
12. [12] Perdikaris, P. G., Kaiktsis, L. and Triantafyllou, G. S., (2009), Chaos in a cylinder wake due to forcing at the Strouhal frequency,Physics of fluids, vol. 21, p. 101705. [DOI:10.1063/1.3258287]
13. [13] Bourdier, S. and Chaplin, J. R., (2012), Vortex-induced vibrations of a rigid cylinder on elastic supports with end-stops, Part 1: Experimental results, Journal of Fluids and structures, vol. 29, p. 62-78. [DOI:10.1016/j.jfluidstructs.2011.12.014]
14. [14] Weymouth, G., (2014), Chaotic rotation of a towed elliptical cylinder, Journal of fluid mechanics, vol. 743, p. 385-398. [DOI:10.1017/jfm.2014.42]
15. [15] Zhao, J., Leontini, J. S., Lo Jacono, D., and Sheridan, J., (2014), Chaotic vortex induced vibrations, Physics of Fluids, vol. 26, p. 121702 [DOI:10.1063/1.4904975]
16. [16] Gao, Y., Fu, S., Xiong, Y., Zhao, Y. and Liu, L., (2017), Experimental study on response performance of vortex-induced vibration on a flexible cylinder, Ships and Offshore Structures, vol. 12, p. 116-134. [DOI:10.1080/17445302.2015.1115182]
17. [17] Huynh, B. H. and Tjahjowidodo, T., (2017), Experimental chaotic quantification in bistable vortex induced vibration systems, Mechanical Systems and Signal Processing, vol. 85, p. 1005-1019. [DOI:10.1016/j.ymssp.2016.09.025]
18. [18] Zeinoddini, M., Bakhtiari, A. and Gharebaghi, S. A., (2018), Towards an understanding of the marine fouling effects on VIV of circular cylinders: a probe into the chaotic features, Nonlinear Dynamics, vol. 94, p. 575-595. [DOI:10.1007/s11071-018-4378-8]
19. [19] Huynh, B. H., Tjahjowidodo, T., Zhong, Z. W., Wang, Y. and Srikanth, N., (2018), Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions, Mechanical Systems and Signal Processing, vol. 98, p. 1097-1115. [DOI:10.1016/j.ymssp.2017.06.002]
20. [20] Sahoo, P. K. and Chatterjee, S., (2021), Nonlinear dynamics of vortex-induced vibration of a nonlinear beam under high-frequency excitation, International Journal of Non-Linear Mechanics, vol. 129, p. 103656. [DOI:10.1016/j.ijnonlinmec.2020.103656]
21. [21] Chen, W., Ji, C., Srinil, N., Yan Y., and Zhang, Z., (2022), Effects of upstream wake on vortex-induced vibrations and wake patterns of side-by-side circular cylinders, Marine Structures, vol. 84, p. 103223. [DOI:10.1016/j.marstruc.2022.103223]
22. [22] Gao, Y., Liu, L., Zou, L., Zhang, Z. and Yang, B., (2020), Effect of surface roughness on vortex-induced vibrations of a freely vibrating cylinder near a stationary plane wall, Ocean Engineering, vol. 198, p. 102663. [DOI:10.1016/j.oceaneng.2019.106837]
23. [23] Bao, Y., Huang, C., Zhou, D., Tu, J., and Han, Z., (2012), Two-degree-of-freedom flow-induced vibrations on isolated and tandem cylinders with varying natural frequency ratios, Journal of Fluids and Structures, vol. 35, p. 50-75, [DOI:10.1016/j.jfluidstructs.2012.08.002]
24. [24] Prasanth, T. K. and Mittal, S., (2009), Vortex-induced vibration of two circular cylinders at low Reynolds number, Journal of Fluids and Structures, vol. 25, p. 731-741. [DOI:10.1016/j.jfluidstructs.2008.12.002]
25. [25] Ramlan, R., Brennan, M., Mace, B. and Kovacic, I., (2010), Potential benefits of a non-linear stiffness in an energy harvesting device, Nonlinear dynamics, vol. 59, p. 545-558. [DOI:10.1007/s11071-009-9561-5]
26. [26] Huynh, B., Tjahjowidodo, T., Zhong, Z., Wang, Y. and Srikanth, N., (2016), Chaotic Responses on Vortex Induced Vibration Systems Supported by Bi-stable Springs, ISMA2016 International Conference on Noise and Vibration Engineering, p. 695-704.
27. [27] Gottwald, G. A. and Melbourne, I., (2004), A new test for chaos in deterministic systems, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 460, p. 603-611. [DOI:10.1098/rspa.2003.1183]
28. [28] Ahmet, Ö. and Erhan, A., (2005), Tools for detecting chaos, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 9, p. 60-66.
29. [29] Baker, G. L. and Gollub, J. P., (1990), Chaotic dynamics: an introduction, Cambridge University Press. [DOI:10.1063/1.4822948]
30. [30] Velosa, C. M. and Bousson, K., (2015), Robust real-time chaos detection from measurement data, WSEAS Transactions on Systems and Control, vol. 10, p. 735-751.
31. [31] Kantz, H. and Schreiber, T., (2004), Nonlinear time series analysis, Cambridge university press. [DOI:10.1017/CBO9780511755798]
32. [32] Boccaletti, S., (2008), The synchronized dynamics of complex systems, Monograph series on nonlinear science and complexity, vol. 6, p. 1-239. [DOI:10.1016/S1574-6917(07)06001-1]
33. [33] Gottwald, G. A. and Melbourne, I., (2009), On the implementation of the 0-1 test for chaos, SIAM Journal on Applied Dynamical Systems, vol. 8, p. 129-145. [DOI:10.1137/080718851]
34. [34] Lee, J. H. and Bernitsas, M. M., (2011), High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter, Ocean Engineering, vol. 38, p. 1697-1712. [DOI:10.1016/j.oceaneng.2011.06.007]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.