1. [1] Wang, Y., Wu, Z., Zhang, G., Li, Y. and Wang, F., (2020), Bifurcation phenomenon and multi-stable behavior in vortex-induced vibration of top tension riser in shear flow, JVC/Journal of Vibration and Control, vol. 26, p. 659-670. [
DOI:10.1177/1077546319889856]
2. [2] Jauvtis, N. and Williamson, C. H. K., (2003), Vortex-induced vibration of a cylinder with two degrees of freedom, Journal of Fluids and Structures, vol. 17, p. 1035-1042. [
DOI:10.1016/S0889-9746(03)00051-3]
3. [3] Imaoka, K., Kobayashi, Y., Emaru, T. and Hoshino, Y., (2015), Vortex-Induced Vibration of an Elastically-Supported Cylinder Considering Random Flow Effects, SICE Journal of Control, Measurement, and System Integration, vol. 8, p. 131-138. [
DOI:10.9746/jcmsi.8.131]
4. [4] Siewe Siewe, M. and Xia, X., (2012), Nonlinear dynamics and small damping signal control of chaos in a model of flow-induced oscillations of cylinders, Mechanics Research Communications, vol. 46, pp. 8-14. [
DOI:10.1016/j.mechrescom.2012.08.004]
5. [5] Gopalkrishnan R., (1993), Vortex-Induced Forces on Oscillating Bluff Cylinders.
6. [6] Modarres-Sadeghi, Y., Chasparis, F., Triantafyllou, M. S., Tognarelli, M. and Beynet, P., (2011), Chaotic response is a generic feature of vortex-induced vibrations of flexible risers, Journal of Sound and Vibration, vol. 330, p. 2565-2579. [
DOI:10.1016/j.jsv.2010.12.007]
7. [7] Plaschko, P., Berger, E. and Brod, K., (1993), The transition of flow-induced cylinder vibrations to chaos, Nonlinear Dynamics, vol. 4, p. 251-268. [
DOI:10.1007/BF00046323]
8. [8] Leontini, J. S., Thompson, M. C. and Hourigan, K., (2006), The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow, Journal of Fluids and Structures, vol. 22, p. 857-864. [
DOI:10.1016/j.jfluidstructs.2006.04.003]
9. [9] Blackburn, H. and Henderson, R., (1996), Lock-in behavior in simulated vortex-induced vibration, Experimental Thermal and Fluid Science, vol. 12, p. 184-189. [
DOI:10.1016/0894-1777(95)00093-3]
10. [10] Leontini, J. and Thompson, M., (2008), Chaotic oscillation during vortex-induced vibration, 22nd International Congress of Theoretical and Applied Mechanics, p. 1-2.
11. [11] Gaurier, B., Cebron, D. and Germain, G., (2008), Vortex-induced vibrations using wake oscillator model. Comparison on 2D response with experiments, 9th International Conference on Flow-Induced Vibrations (FIV2008), Prague, République Tchèque.
12. [12] Perdikaris, P. G., Kaiktsis, L. and Triantafyllou, G. S., (2009), Chaos in a cylinder wake due to forcing at the Strouhal frequency,Physics of fluids, vol. 21, p. 101705. [
DOI:10.1063/1.3258287]
13. [13] Bourdier, S. and Chaplin, J. R., (2012), Vortex-induced vibrations of a rigid cylinder on elastic supports with end-stops, Part 1: Experimental results, Journal of Fluids and structures, vol. 29, p. 62-78. [
DOI:10.1016/j.jfluidstructs.2011.12.014]
14. [14] Weymouth, G., (2014), Chaotic rotation of a towed elliptical cylinder, Journal of fluid mechanics, vol. 743, p. 385-398. [
DOI:10.1017/jfm.2014.42]
15. [15] Zhao, J., Leontini, J. S., Lo Jacono, D., and Sheridan, J., (2014), Chaotic vortex induced vibrations, Physics of Fluids, vol. 26, p. 121702 [
DOI:10.1063/1.4904975]
16. [16] Gao, Y., Fu, S., Xiong, Y., Zhao, Y. and Liu, L., (2017), Experimental study on response performance of vortex-induced vibration on a flexible cylinder, Ships and Offshore Structures, vol. 12, p. 116-134. [
DOI:10.1080/17445302.2015.1115182]
17. [17] Huynh, B. H. and Tjahjowidodo, T., (2017), Experimental chaotic quantification in bistable vortex induced vibration systems, Mechanical Systems and Signal Processing, vol. 85, p. 1005-1019. [
DOI:10.1016/j.ymssp.2016.09.025]
18. [18] Zeinoddini, M., Bakhtiari, A. and Gharebaghi, S. A., (2018), Towards an understanding of the marine fouling effects on VIV of circular cylinders: a probe into the chaotic features, Nonlinear Dynamics, vol. 94, p. 575-595. [
DOI:10.1007/s11071-018-4378-8]
19. [19] Huynh, B. H., Tjahjowidodo, T., Zhong, Z. W., Wang, Y. and Srikanth, N., (2018), Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions, Mechanical Systems and Signal Processing, vol. 98, p. 1097-1115. [
DOI:10.1016/j.ymssp.2017.06.002]
20. [20] Sahoo, P. K. and Chatterjee, S., (2021), Nonlinear dynamics of vortex-induced vibration of a nonlinear beam under high-frequency excitation, International Journal of Non-Linear Mechanics, vol. 129, p. 103656. [
DOI:10.1016/j.ijnonlinmec.2020.103656]
21. [21] Chen, W., Ji, C., Srinil, N., Yan Y., and Zhang, Z., (2022), Effects of upstream wake on vortex-induced vibrations and wake patterns of side-by-side circular cylinders, Marine Structures, vol. 84, p. 103223. [
DOI:10.1016/j.marstruc.2022.103223]
22. [22] Gao, Y., Liu, L., Zou, L., Zhang, Z. and Yang, B., (2020), Effect of surface roughness on vortex-induced vibrations of a freely vibrating cylinder near a stationary plane wall, Ocean Engineering, vol. 198, p. 102663. [
DOI:10.1016/j.oceaneng.2019.106837]
23. [23] Bao, Y., Huang, C., Zhou, D., Tu, J., and Han, Z., (2012), Two-degree-of-freedom flow-induced vibrations on isolated and tandem cylinders with varying natural frequency ratios, Journal of Fluids and Structures, vol. 35, p. 50-75, [
DOI:10.1016/j.jfluidstructs.2012.08.002]
24. [24] Prasanth, T. K. and Mittal, S., (2009), Vortex-induced vibration of two circular cylinders at low Reynolds number, Journal of Fluids and Structures, vol. 25, p. 731-741. [
DOI:10.1016/j.jfluidstructs.2008.12.002]
25. [25] Ramlan, R., Brennan, M., Mace, B. and Kovacic, I., (2010), Potential benefits of a non-linear stiffness in an energy harvesting device, Nonlinear dynamics, vol. 59, p. 545-558. [
DOI:10.1007/s11071-009-9561-5]
26. [26] Huynh, B., Tjahjowidodo, T., Zhong, Z., Wang, Y. and Srikanth, N., (2016), Chaotic Responses on Vortex Induced Vibration Systems Supported by Bi-stable Springs, ISMA2016 International Conference on Noise and Vibration Engineering, p. 695-704.
27. [27] Gottwald, G. A. and Melbourne, I., (2004), A new test for chaos in deterministic systems, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 460, p. 603-611. [
DOI:10.1098/rspa.2003.1183]
28. [28] Ahmet, Ö. and Erhan, A., (2005), Tools for detecting chaos, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 9, p. 60-66.
29. [29] Baker, G. L. and Gollub, J. P., (1990), Chaotic dynamics: an introduction, Cambridge University Press. [
DOI:10.1063/1.4822948]
30. [30] Velosa, C. M. and Bousson, K., (2015), Robust real-time chaos detection from measurement data, WSEAS Transactions on Systems and Control, vol. 10, p. 735-751.
31. [31] Kantz, H. and Schreiber, T., (2004), Nonlinear time series analysis, Cambridge university press. [
DOI:10.1017/CBO9780511755798]
32. [32] Boccaletti, S., (2008), The synchronized dynamics of complex systems, Monograph series on nonlinear science and complexity, vol. 6, p. 1-239. [
DOI:10.1016/S1574-6917(07)06001-1]
33. [33] Gottwald, G. A. and Melbourne, I., (2009), On the implementation of the 0-1 test for chaos, SIAM Journal on Applied Dynamical Systems, vol. 8, p. 129-145. [
DOI:10.1137/080718851]
34. [34] Lee, J. H. and Bernitsas, M. M., (2011), High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter, Ocean Engineering, vol. 38, p. 1697-1712. [
DOI:10.1016/j.oceaneng.2011.06.007]