1. AZIMINIA, M., ABAZARI, A., BEHZAD, M. and HAYATDAVOODI, M.,(2022), Stability analysis of parametric resonance in spar-buoy based on Floquet theory, Ocean Engineering 266, p. 113090. [
DOI:10.1016/j.oceaneng.2022.113090]
2. ABAZARI, A., BEHZAD, M. and THIAGARAJAN, K.,(2021), Hydrodynamic damping enhancement by implementing a novel combined rigid-elastic heave plate, Journal of Marine Science and Technology 26, p. 216-232.http://dx.doi.org/10.1007/s00773-020-00732-7 [
DOI:10.1007/s00773-020-00732-7]
3. ABAZARI, A., BEHZAD, M. and THIAGARAJAN, K. P.,(2022), Experimental assessment of hydrodynamic coefficients for a heave plate executing pitch oscillations, Journal of Waterway, Port, Coastal, and Ocean Engineering 148(1), p. 04021038.
3 [
DOI:10.1061/(ASCE)WW.1943-5460.000068]
4. ABAZARI, A., ALVANDI, M., BEHZAD, M. and THIAGARAJAN, K. P.,(2021), Vortex shedding modes around oscillating non-uniform double heave plates, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 235(2), p. 558-569.
910 [
DOI:10.1177/1475090220966]
5. ABAZARI, A. and AZIMINIA, M.,(2023), Enhanced power extraction by splitting a single flap-type wave energy converter into a double configuration, Renewable Energy Research and Applications 4(2), p. 243-249. [
DOI:10.22044/rera.2022.11846.1118]
6. ABAZARI, A.,(2023), Dynamic response of a combined spar-type FOWT and OWC-WEC by a simplified approach, Renewable Energy Research and Applications 4(1), p. 66-77. [
DOI:10.22044/rera.2022.11768.1109]
7. GHARECHAE, A., ABAZARI, A. and KETABDARI, M. J.,(2022), A semi-analytical solution for energy harvesting via the elastic motion of the circular floater of aquaculture cages attached with piezoelectric, Renewable Energy 196, p. 181-194. [
DOI:10.1016/j.renene.2022.06.093]
8. FITZGERALD, J. and BERGDAHL, L.,(2007), in Proc 7th European Wave Tidal Energy Conf, Porto, Portugal.
9. YUAN, Z.-M., INCECIK, A. and JI, C.,(2014), Numerical study on a hybrid mooring system with clump weights and buoys, Ocean Engineering 88, p. 1-11. [
DOI:10.1016/j.oceaneng.2014.06.002]
10. XU, S., JI, C.-Y. and SOARES, C. G.,(2019), Estimation of short-term extreme responses of a semi-submersible moored by two hybrid mooring systems, Ocean Engineering 190, p. 106388. [
DOI:10.1016/j.oceaneng.2019.106388]
11. MA, K.-T., LUO, Y., KWAN, C.-T. T. and WU, Y.,(2019), Mooring system engineering for offshore structures, Gulf Professional Publishing.
12. LIU, Z., TU, Y., WANG, W. and QIAN, G.,(2019), Numerical analysis of a catenary mooring system attached by clump masses for improving the wave-resistance ability of a spar buoy-type floating offshore wind turbine, Applied Sciences 9(6), p. 1075. [
DOI:10.3390/app9061075]
13. BRUSCHI, N., FERRI, G., MARINO, E. and BORRI, C.,(2020), Influence of clumps-weighted moorings on a spar buoy offshore wind turbine, Energies 13(23), p. 6407. [
DOI:10.3390/en13236407]
14. ZHANG, L., MICHAILIDES, C., WANG, Y. and SHI, W.,(2020), in Structures. Elsevier, vol. 28, p. 1435-1448. [
DOI:10.1016/j.istruc.2020.09.067]
15. XU, K., et al.,(2021), Design and comparative analysis of alternative mooring systems for floating wind turbines in shallow water with emphasis on ultimate limit state design, Ocean Engineering 219, p. 108377. [
DOI:10.1016/j.oceaneng.2020.108377]
16. RINALDI, G., GORDELIER, T., SANSOM, M. and JOHANNING, L.,(2021), Development of a modular mooring system with clump weights, Ocean Engineering 223, p. 108536. [
DOI:10.1016/j.oceaneng.2020.108536]
17. NEISI, A., GHASSEMI, H., IRANMANESH, M. and HE, G.,(2022), Effect of the multi-segment mooring system by buoy and clump weights on the dynamic motions of the floating platform, Ocean Engineering 260, p. 111990. [
DOI:10.1016/j.oceaneng.2022.111990]
18. LOPEZ-OLOCCO, T., et al.,(2022), Experimental and numerical study of the influence of clumped weights on a scaled mooring line, Journal of Marine Science and Engineering 10(5), p. 676. [
DOI:10.3390/jmse10050676]
19. DING, W., AI, C., JIN, S. and LIN, J.,(2020), 3D numerical investigation of forces and flow field around the semi-submersible platform in an internal solitary wave, Water 12(1), p. 208. [
DOI:10.3390/w12010208]
20. DIZNAB, M. D., MOHAJERNASSAB, S., SEIF, M., TABESHPOUR, M. and MEHDIGHOLI, H.,(2014), Assessment of offshore structures under extreme wave conditions by modified endurance wave analysis, Marine structures 39, p. 50-69. [
DOI:10.1016/j.marstruc.2014.06.003]
21. BAGHERNEZHAD, N., EDALAT, P. and ETEMADDAR, M.,(2017), Hull Performance Assessment and Comparison of Ship-Shaped and Cylindrical FPSOs With Regards To: Stability, Sea-Keeping, Mooring and Riser Loads In Shallow Water, International Journal of Maritime Technology 8, p. 1-13.10.29252/ijmt.8.1 [
DOI:10.29252/ijmt.8.1]
22. DNV, G.,(2010), DNV-RP-C205, Environmental conditions and environmental loads.
23. DNVGL, P. M. D.-O.-E., " 2018,(
24. XU, S., JI, C. and SOARES, C. G.,(2018), Experimental study on taut and hybrid moorings damping and their relation with system dynamics, Ocean Engineering 154, p. 322-340. [
DOI:10.1016/j.oceaneng.2018.01.085]
25. JI, C. and YUAN, Z.,(2015), Experimental study of a hybrid mooring system, Journal of Marine Science and Technology 20, p. 213-225. [
DOI:10.1007/s00773-014-0260-7]