پیام خود را بنویسید

XML English Abstract Print


دانشگاه جامع امام حسین(ع)
چکیده:   (83 مشاهده)
یکی از اصلی‌ترین منابع تولید نویز وسیله‌های دریایی، پروانه‌ها هستند. نویز تولید شده از پروانه‌ها می‌تواند منجر به شناخته شدن توسط سامانه‌های آشکارساز شده و تاثیرات منفی بر زیست بوم‌های دریایی داشته باشد. محققان روش‌های مختلفی را به منظور کاهش نویز پروانه‌های دریایی مورد بررسی قرار داده‌اند. اما آنچه در عمل اهمیت پیدا می‌کند کاهش نویز همزمان با افزایش بازدهی پروانه است که کمتر مورد توجه واقع شده است. در این مقاله ضمن بررسی پارامترهای مختلف هندسی به منظور دستیابی به یک پروانه بهینه کاهش نویز یافته، همزمان به افزایش بازدهی پروانه نیز پرداخته می‌شود.  شبیه‌سازی عددی با استفاده از دینامیک سیالات محاسباتی با تکیه بر روش حجم محدود و نرم‌افزار STAR-CCM+ انجام شده است. به منظور اعتبارسنجی شبیه‌سازی هیدروآکوستیکی و هیدوردینامیکی از یک پروانه متداول که داده‌های آن موجود می‌باشد، استفاده شده است.نتایج در این تحقیق نشان میدهد پروانه اسکیو بالا پس از بهینه‌سازی انجام شده، در شرایط کارکردی برابر، سبب افزایش بازدهی به میزان 1.95 درصد و همچنین کاهش نویز تولیدی 5.3 دسی‌بل در فرکانس عبوری پره اول نسبت به پروانه‌ متداول شده است.
متن کامل [PDF 1016 kb]   (36 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: هیدرودینامیک کشتی
دریافت: 1403/10/1 | پذیرش: 1404/3/27

فهرست منابع
1. D. R. Blidberg, J. C. Jalbert, and M. Ageev, "Solar autonomous underwater vehicle system," in Oceans Conference Record (IEEE), 1997, vol. 2, pp. 833-840. doi: 10.1109/oceans.1997.624103. [DOI:10.1109/OCEANS.1997.624103]
2. "John carlton, Marine Propellers and Propulsion. Cambridge: Elsevier, 2019.". [DOI:10.1016/B978-0-08-100366-4.00012-2]
3. M. Renilson, R. Leaper, and O. Boisseau, "Hydro-acoustic noise from merchant ships-impacts and practical mitigation techniques," in Proceedings of the third international symposium on marine propulsors, smp, 2013, vol. 13, pp. 201-208.
4. E. Korkut and M. Atlar, "An experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers," Ocean Eng., vol. 41, pp. 1-12, 2012. [DOI:10.1016/j.oceaneng.2011.12.012]
5. M. Atlar, E. J. Glover, M. Candries, R. J. Mutton, and C. D. Anderson, "The effect of a foul release coating on propeller performance," in International conference on Marine Science and Technology for Environmental Sustainability (ENSUS 2002), 2002.
6. M. R. Bagheri, H. Mehdigholi, M. S. Seif, and O. Yaakob, "An experimental and numerical prediction of marine propeller noise under cavitating and non-cavitating conditions," Brodogradnja, vol. 66, no. 2, pp. 29-45, 2015.
7. H. Seol, S. Pyo, J.-C. Suh, and S. Lee, "Numerical study of non-cavitating underwater propeller noise," Noise Vib. Worldw., vol. 35, no. 6, pp. 11-26, 2004. [DOI:10.1260/0957456041648489]
8. R. M. C. Pty, Reducing underwater noise pollution from large commercial vessels. International Fund for Animal Welfare, 2009.
9. G. Gennaro and J. Gonzalez-Adalid, "Improving the propulsion efficiency by means of Contracted and Loaded Tip (CLT) propellers," 2012.
10. P. Andersen, J. Friesch, J. J. Kappel, L. Lundegaard, and G. Patience, "Development of a marine propeller with nonplanar lifting surfaces," Mar. Technol. SNAME news, vol. 42, no. 03, pp. 144-158, 2005. [DOI:10.5957/mt1.2005.42.3.144]
11. Elhami, M.R., Najafi, M.R. & Tashakori Bafghi, M. Vibration analysis and numerical simulation of fluid-structure interaction phenomenon on a turbine blade. J Braz. Soc. Mech. Sci. Eng. 43, 245 (2021). [DOI:10.1007/s40430-021-02933-6]
12. H. R. Hansen, T. Dinham-Peren, and T. Nojiri, "Model and full scale evaluation of a 'propeller boss cap fins' device fitted to an Aframax tanker," in Second International Symposium on Marine Propulsors, 2011.
13. H. CAI, C. MA, K. CHEN, Z. QIAN, and C. YANG, "An Integrative Design Method of Propeller and PBCF (Propeller Boss Cap Fins)," in Proceedings of the Third International Symposium on Marine Propulsors, Smp2013, Launceston, Tasmania, Australia, 2013.
14. F. Chekab, M. Amin, M. Ghadimi, A. Zamanian, A. Norouzi, and H. Hashem, "Investigating the effects of increasing blade number and using a duct on reducing non-cavitation noise of submerged propellers," Journal of the Iranian Society of Acoustical Engineering, vol. 2, no. 1, pp. 16-23, 2014(in persian).
15. S. Mirzazadeh, "Design and construction of an optimized geometric section to increase the efficiency of propulsion systems," M.S. thesis, Sharif Univ. Technol., Tehran, Iran, 2013(in persian).
16. "O. A. A. Asimakopoulos and P. Kaklis, 'Effects of propeller geometry on cavitation,' University of Strathclyde, 2016.".
17. D. Bertetta, S. Brizzolara, E. Canepa, S. Gaggero, and M. Viviani, "EFD and CFD characterization of a CLT propeller," Int. J. Rotating Mach., vol. 2012, 2012, doi: 10.1155/2012/348939. [DOI:10.1155/2012/348939]
18. A. Sánchez-Caja, J. González-Adalid, M. Perez-Sobrino, and I. Saisto, "Study of End-Plate Shape Variations for Tip Loaded Propellers Using a RANSE Solver," in 29th Symposium on Naval Hydrodynamics, 2012, no. August.
19. S. Ianniello, R. Muscari, and A. Di Mascio, "Ship underwater noise assessment by the acoustic analogy, part III: Measurements versus numerical predictions on a full-scale ship," J. Mar. Sci. Technol., vol. 19, no. 2, pp. 125-142, 2014, doi: 10.1007/s00773-013-0228-z. [DOI:10.1007/s00773-013-0228-z]
20. S. Gaggero et al., "A Design by Optimization of Tip Loaded Propellers," in Fourth International Symposium on Marine Propulsors smp'15, 2015, no. June.
21. W. Zhu and H. Gao, "A numerical investigation of awinglet-propeller using an LES model," J. Mar. Sci. Eng., vol. 7, no. 10, 2019, doi: 10.3390/jmse7100333. [DOI:10.3390/jmse7100333]
22. Y. Kehr, H. Xu, and J. Kao, "On the development and verification of diffused endplate propeller," in Sixth International Symposium on Marine Propulsors smp'19, 2019, no. May.
23. H. Gao, W. Zhu, Y. Liu, and Y. Yan, "Effect of various winglets on the performance of marine propeller," Appl. Ocean Res., vol. 86, no. January, pp. 246-256, 2019, doi: 10.1016/j.apor.2019.03.006. [DOI:10.1016/j.apor.2019.03.006]
24. M. Gorji, H. Ghassemi, and J. Mohamadi, "Effect of Rake and Skew on the Hydrodynamic Characteristics and Noise Level of the Marine Propeller," Iran. J. Sci. Technol. - Trans. Mech. Eng., vol. 43, no. 1, pp. 75-85, 2019, doi: 10.1007/s40997-017-0108-y. [DOI:10.1007/s40997-017-0108-y]
25. G. Ku, J. Cho, C. Cheong, and H. Seol, "Numerical investigation of tip-vortex cavitation noise of submarine propellers using hybrid computational hydro-acoustic approach," Ocean Eng., vol. 238, no. August, p. 109693, 2021, doi: 10.1016/j.oceaneng.2021.109693. [DOI:10.1016/j.oceaneng.2021.109693]
26. A. Hadipour, K. A. V. Abadi, H. Khanzadi, and H. Motahari, "Hydrodynamic analysis of noise propagation by the high skew marine propeller working in non-uniform inflow," Int. J. Appl. Mech. Eng., vol. 26, no. 1, pp. 104-121, Mar. 2021, doi: 10.2478/ijame-2021-0007. [DOI:10.2478/ijame-2021-0007]
27. K. Yu, D. Park, J. Choi, H. Seol, I. Park, and S. Lee, "Effect of skew on the tonal noise characteristics of a full-scale submarine propeller," Ocean Eng., vol. 276, no. February, p. 114218, 2023, doi: 10.1016/j.oceaneng.2023.114218. [DOI:10.1016/j.oceaneng.2023.114218]
28. Ebrahimi, A., Razaghian, A. H., Seif, M. S., Zahedi, F., & Nouri-Borujerdi, A. (2019). A comprehensive study on noise reduction methods of marine propellers and design procedures. Applied Acoustics, 150, 55-69. [DOI:10.1016/j.apacoust.2018.12.004]
29. Ghasseni, H., & Ghadimi, P. (2011). Numerical analysis of the high skew propeller of an underwater vehicle. Journal of Marine Science and Application, 10, 289-299. [DOI:10.1007/s11804-011-1071-4]
30. Ebrahimi, A., Razaghian, A. H., Tootian, A., & Seif, M. S. (2021). An experimental investigation of hydrodynamic performance, cavitation, and noise of a normal skew B-series marine propeller in the cavitation tunnel. Ocean Engineering, 238, 109739. [DOI:10.1016/j.oceaneng.2021.109739]
31. Razaghian, A. H., Ebrahimi, A., Zahedi, F., Javanmardi, M. R., & Seif, M. S. (2021). Investigating the effect of geometric parameters on hydrodynamic and hydro-acoustic performances of submerged propellers. Applied Ocean Research, 114, 102773. [DOI:10.1016/j.apor.2021.102773]
32. "Lighthill, M. J., (1954), On sound generated aerodynamically. II. Turbulence as a source of sound. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 222(1148), p.1-32.". [DOI:10.1098/rspa.1954.0049]
33. "Rienstra, S. W., & Hirschberg, A. An introduction to acoustics. Report IWDE, pp.92-06.".
34. S. Sezen and O. K. Kinaci, "Incompressible flow assumption in hydroacoustic predictions of marine propellers," Ocean Eng., vol. 186, no. January, p. 106138, 2019, doi: 10.1016/j.oceaneng.2019.106138. [DOI:10.1016/j.oceaneng.2019.106138]
35. ITTC Procedings, "Practical Guidelines for Ship CFD Applications ITTC - Recommended Procedures and Guidelines, section 7.5-03-02-03," in International Towing Tank Conference, 2014.
36. I. B. Celik, U. Ghia, P. J. Roache, C. J. Freitas, H. Coleman, and P. E. Raad, "Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications," J. Fluids Eng., vol. 130, no. 7, pp. 078001-078004, 2008, doi: 10.1115/1.2960953 [DOI:10.1115/1.2960953]
37. M. Renilson, Submarine Hydrodynamics, 2nd ed. Springer International Publishing, 2018. doi: 10.3723/ut.33.137. [DOI:10.3723/ut.33.137]
38. H. Mohamed, M. H. Lee, S. Salleh, B. Sanugi, and M. Sarahintu, "Taguchi Approach for Performance Evaluation of Routing Protocols in Mobile Ad Hoc Networks," J. Stat. Model. Anal., vol. 1, no. 2, pp. 10-18, 2010.

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.