پیام خود را بنویسید

XML English Abstract Print


دانشگاه صنعتی امیرکبیر
چکیده:   (258 مشاهده)
 کاهش اکو از شناورهای زیرسطحی یکی از مهمترین دغدغه‌های مسئله اختفاء زیرسطحی است. اخیراً استفاده از پراکنده سازها به صورت توزیع در شبکه های تناوبی دوگانه، به دلیل عملکرد نسبتاً مطلوب و قابلیت ایجاد تنظیم در بازه فرکانسی موثر، بسیار مورد توجه قرار گرفته است. در این تحقیق مدلی از یک پوشش کاهنده اکوی صوتی با حفره‌های پراکنده‌ساز درونی در نظر گرفته شده است. همچنین کلیه پارامترهای موثر در عملکرد صوتی لایه از قبیل اندازه حفره‌ها، ثابت شبکه و محل قرارگیری حفره‌ها در پوشش، برای دو نوع هندسه حفره پراکنده‌ساز کروی و استوانه‌ای، تحلیل و مورد بررسی قرار گرفته است. نتایج تحقیق نشان داد که هرچه اندازه حفره بزرگتر باشد، لایه اثر کاهش اکوی بیشتری از خود نشان خواهد داد. در رابطه با ثابت شبکه، در نظر گرفتن ثابت شبکه کوچکتر اثر منفی روی کاهش اکو داشته ولی اتلاف انتقال را افزایش خواهد داد. همچنین مکان قرارگیری حفره‌ها، اگر نزدیک به صفحه ورود موج باشد، اثر کاهش اکوی بهتری از خود نشان می دهد. 
متن کامل [PDF 1931 kb]   (53 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: طراحي، هیدروديناميك و ساخت زيرسطحي
دریافت: ۱۳۹۸/۶/۱۲ | پذیرش: ۱۳۹۸/۱۲/۱۲

فهرست منابع
1. 1- Barge, F. A., (1978), Underwater acoustic absorption characteristics of composites of wood, rubber and steel, Technical memorandum, File No. TM 78-52, The Pennsylvania State University Applied Research Laboratory.
2. Hinders, M.K., Rhodes, B.A. and Fang, T.M., (1995), Particle loaded composites for acoustic anechoic coatings, journal of sound and vibration, Vol. 185(2), p.219-46. [DOI:10.1006/jsvi.1995.0377]
3. Cederholm, A., (2003), Homogeneous models of anechoic rubber coatings, Doctoral Thesis, Royal Institute of Technology, ISBN. 91-7283-580-X.
4. Yang, X. Wang, Y. and Yu, H., (2007), Sound Performance of Multilayered Composites, Journal of Materials and Manufacturing Processes, Vol.22(6), p.721-725. [DOI:10.1080/10426910701385291]
5. Cheng, Y., Xu, J. Y. and Liu, X. J., (2009), Broadband Acoustic Cloak with Multilayered Homogeneous Isotropic Materials, PIERS Online, Vol.5(2), p.177-180. [DOI:10.2529/PIERS080901204601]
6. Zakharov, D.D., (2010), Effective high-order approximations of layered coatings and linings of anisotropic elastic, viscoelastic and nematic materials, Journal of Applied Mathematics and Mechanics, Vol.74, p.286-296. [DOI:10.1016/j.jappmathmech.2010.07.004]
7. Baker, R. M. L. and Baker, B. S., (2012), Multiple-layer radiation absorber, Physics Procedia, Vol.38, p.298-303. [DOI:10.1016/j.phpro.2012.08.029]
8. Chevillotte, F., Perrot, C. and Ranneton, R., (2010), Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams, Journal of Acoustical Society of America, Vol.128 (4), p.1766-1776. [DOI:10.1121/1.3473696]
9. Chevillotte, F. and Ranneton, R., (2007), Elastic characterization of closed cell foams from impedance tube absorption tests, Journal of Acoustical Society of America, Vol.122 (5), p.2653-2660. [DOI:10.1121/1.2783126]
10. Chekkal, Bianchi, M., Remillat, C., Becot, F. X., Jaouen, L. and Scarpa F., (2010), Vibro-Acoustic Properties of Auxetic Open Cell Foam: Model and Experimental Results, Acta Acustica United with Acustica, Vol.96, p.266-274. [DOI:10.3813/AAA.918276]
11. Jaouen, L. and Becot, F. X., (2010), Indirect acoustical characterization of foams with two scales of porosity, case of micro-scale characteristic length of the order of 1 micron, The 17th International Congress on sound and vibration, Cairo, Egypt, p.1-8.
12. Shin, H. C., Taherzadeh, S. and Attenborough, K., (2012), Estimation of acoustic and elastic properties of plastic foam using acoustic-to-frame coupling, Proceedings of the Acoustics 2012 Nantes Conference, France, p.1967-1971.
13. Hennion, A. C., Bossut, R., Decarpigny, J. N. and Audoly, C., (1990), Analysis of the scattering of a plane acoustic wave by a periodic elastic structure using the finite element method: Application to compliant tube gratings, Journal of Acoustical Society of America, Vol.87(5), p.1861-1870. [DOI:10.1121/1.399312]
14. Hladky‐Hennion, A. C. and Decarpigny, J. N., (1991), Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: Application to Alberich anechoic coatings, Journal of Acoustical Society of America, Vol.90(6), p.3356-3367. [DOI:10.1121/1.401395]
15. Ivansson, S., (2005), Reflections from steel plates with doubly periodic anechoic coatings, Theoretical and Computational Acoustics (With CD), p.89-98.
16. Hao, Z., Bi-long, L. and Zheng-tao, S., (2015), Sound absorption features of double layered structures coated with acoustic absorption layers, Journal of Vibration and Shock, Vol.34, No.23, p.31-36.
17. Ma, T. C., Scott, R. A. and Yang, W. H., (1980), Harmonic wave propagation in an infinite viscoelastic medium with a periodic array of cylindrical elastic fibres, Journal of Sound and Vibration, Vol.69, p.257-264. [DOI:10.1016/0022-460X(80)90610-0]
18. 17- Ma, T. C., Scott, R. A. and Yang, W. H., (1980), Harmonic wave propagation in an infinite elastic medium with a periodic array of cylindrical pores, Journal of Sound and Vibration, Vol.71, p.473-482. [DOI:10.1016/0022-460X(80)90719-1]
19. Easwaran, V. and Munjal, M. L., (1993), Analysis of reflection characteristics of a normal incidence plane wave on resonant sound absorbers: A finite element approach, Journal of Sound and Vibration, Vol.93 (3), p.1308-1318. [DOI:10.1121/1.405416]
20. Langlet, P., Hladky‐Hennion, A. C. and Decarpigny, J. N., (1995), Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method, Journal of Sound and Vibration, Vol.98 (5), p.2792-2800. [DOI:10.1121/1.413244]
21. Ivansson, S., (2004), Sound absorption by viscoelastic coatings with periodically distributed cavities, Swedish Defense Research Agency, Technical Report, ISSN. 1650-1942, p.1-30.
22. Ivansson, S., (2005), Numerical modeling for design of viscoelastic coatings with favorable sound absorbing properties, Journal of Nonlinear Analysis, Vol.63, p.1541-1550. [DOI:10.1016/j.na.2005.01.050]
23. Cai, C., Hung, K. C. and Khan M. S., (2006), Simulation-based analysis of acoustic absorbent lining subject to normal plane wave incidence, Journal of Sound and Vibration, Vol.124 (4), p.1974-1984.
24. Ivansson S., (2008), Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes, Journal of Acoustical Society of America, Vol.87 (5), p.1861-1870. [DOI:10.1121/1.2934327]
25. Panigrahi, S. N., Jog, C. S. and Munjal, M.L., (2008), Multi-focus design of underwater noise control linings based on finite element analysis, journal of Applied Acoustics, Vol.69, p.1141-1153. [DOI:10.1016/j.apacoust.2007.11.012]
26. Meng, H., Wen, J., Zhao, H., Lv, L. and Wen X., (2012), Analysis of absorption performances of anechoic layers with steel plate backing, Journal of Acoustical Society of America, Vol.132(1), p.69-75. [DOI:10.1121/1.4728198]
27. Hai-Bin, Y., Yue, L., Hong-Gang, Z., Ji-Hong, W. and Xi-Sen, W., (2014), Acoustic anechoic layers with singly periodic array of scatterers: Computational methods, absorption mechanisms, and optimal design, journal of Chinese Physics B, Vol.23, No.10, p. 104304-1 104304-9. [DOI:10.1088/1674-1056/23/10/104304]
28. Meng, T., (2014), Simplified model for predicting acoustic performance of an underwater sound absorption coating, Journal of Vibration and Control, Vol.20 (3), p.339-354. [DOI:10.1177/1077546312461027]
29. Guo-Liang, J., Jian-Fei, Y., Ji-Hong, W. and Xi-Sen,W., (2016), Investigation of underwater sound scattering on a cylindrical shell coated with anechoic coatings by the finite element method based on an equivalent parameter inversion, Acta Physica Sinica, Vol. 65, No. 1, p. 014305-1- 014305-8.
30. Ye, C., Liu, X., Xin, F., and Lu, T. J., (2018), Underwater acoustic absorption of composite anechoic layers with inner holes, Journal of Sound and Vibration, Vol.426, p.54-74. [DOI:10.1016/j.jsv.2018.04.008]
31. Meng, T. and Hong-Xing, H., (2011), Improved low-frequency performance of a composite sound absorption coating, Journal of Vibration and Control, Vol.18, p.48-57. [DOI:10.1177/1077546311400930]
32. Zhao, H., Wen, j.,Yang, H., Lv, L. and Wen, X., (2014), Backing effects on the underwater acoustic absorption of a viscoelastic slab with locally resonant scatterers, Applied Acoustics, Vol.76, p.48-51. [DOI:10.1016/j.apacoust.2013.07.022]
33. Meyer, E., Brendel, K. and Tamm, K., (1958), Pulsation Oscillations of Cavities in Rubber, Journal of Acoustical Society of America, Vol.30 (12), p.1116-1124. [DOI:10.1121/1.1909475]
34. Gaunaurd, G. C. and Oberall, H., (1978), Theory of resonant scattering from spherical cavities in elastic and viscoelastic media, Journal of Acoustical Society of America, Vol.63 (6), p.1699-1712. [DOI:10.1121/1.381908]
35. Gaunaurd, G. C., Scharnhorst, K. P. and Oberall, H., (1978), Giant monopole resonances in the scattering of waves from gas-filled spherical cavities and bubbles, Journal of Acoustical Society of America, Vol.65 (3), p.573-594. [DOI:10.1121/1.382494]
36. Fiorito, R., Madigosky, W. and Oberall, H., (1979), Resonance theory of acoustic waves interacting with an elastic plate, Journal of Acoustical Society of America, Vol.66 (6), p.1857-1866. [DOI:10.1121/1.383618]
37. Brill, D., Gaunaurd, G. C. and Oberall, H., (1980), Resonance theory of elastic shear-wave scattering from spherical fluid obstacles in solids, Journal of Acoustical Society of America, Vol.67 (2), p. 414-424. [DOI:10.1121/1.383927]
38. Li, W., (2014), Experimental studies on the determination of acoustic bulk material properties and transfer impedance, Master of Science Thesis, University of Kentucky, Lexington, Kentucky.
39. Jarzynski, J., (1990), Mechanisms of Sound Attenuation in Materials, Sound and Vibration Damping with Polymer, Chapter 10, ACS Symposium Series 424, Dallas, Texas. [DOI:10.1021/bk-1990-0424.ch010]
40. Adair, L. and Cook, R., (1973), Acoustic Properties of Rho‐C Rubber and ABS in the Frequency Range 100‐kHz‐2 MHz, The Journal of the Acoustical Society of America, Vol.54 (6), p.1763-1765. [DOI:10.1121/1.1914484]

ارسال پیام به نویسنده مسئول


Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.