پیام خود را بنویسید
دوره 15، شماره 30 - ( 11-1398 )                   جلد 15 شماره 30 صفحات 121-129 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehrfar H, Torabi Azad M, Lari K, Ali-Akbari Bidokhti A. Study of the Persian Gulf coastal jets under the influence of thermocline using numerical simulation. marine-engineering. 2020; 15 (30) :121-129
URL: http://marine-eng.ir/article-1-747-fa.html
مهرفر حسام الدین، ترابی آزاد مسعود، لاری کامران، علی اکبری بیدختی عباسعلی. مطالعه جت‌های ساحلی خلیج فارس تحت تاثیر ترموکلاین با استفاده از شبیه سازی عددی. مهندسی دریا. 1398; 15 (30) :121-129

URL: http://marine-eng.ir/article-1-747-fa.html


دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی، واحد تهران شمال
چکیده:   (151 مشاهده)
گردش فصلی جریان ­های ساحلی خلیج­ فارس با تفکیک­پذیری افقی طول و عرض جغرافیایی 2 دقیقه، با استفاده از مدل عددی کوهیرنس شبیه­ سازی شد. نتایج شبیه­ سازی نشان داد که جریان ­های سواحل ایران به سمت شمال­ غربی در ماه­ های دی تا فروردین گسترش می­ یابد و به بیشترین شدت خود در ماه ­های خرداد تا مرداد، زمانی­ که جریان درون ­ریز سطحی از طریق تنگه هرمز و با استقرار ترموکلاین فصلی به تدریج قوی­ تر می­ شود، می­ رسد. نتایج شبیه­ سازی نشان ­دهنده گسترش ترموکلاین با شروع فصل گرما است. تحت این شرایط جریان­ های ساحلی قوی­ تری در تابستان به وجود می ­آید. نتایج شبیه­ سازی وجود جت ساحلی را در ماه­ های اردیبهشت تا مهر با سرعت حدودا cm/s 30 نشان داد. جت ساحلی در مجاورت سواحل ایران تنها محدود به سطح است و به­ طرف جنوب­شرقی حرکت می­ نماید، اما جت­ساحلی در مجاورت عربستان سعودی در تمامی ستون آب به طور کامل از سطح تا بستر وجود دارد و به­ سمت جنوب­ شرقی حرکت می­ کند.

 
متن کامل [PDF 1051 kb]   (48 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: هیدروديناميك سازه های ساحلی و فراساحلی
دریافت: ۱۳۹۸/۴/۲۸ | پذیرش: ۱۳۹۸/۱۰/۱۵

فهرست منابع
1. 1- Thoppil, P.G., and Hogan, P.J., (2010a), A modeling study of circulation and eddies in the Persian Gulf. Journal of Physical Oceanography, Vol. 40, p.2122-2134. [DOI:10.1175/2010JPO4227.1]
2. Pous, S., Lazure, P., and Carton, X., (2015), A model of the general circulation in the Persian Gulf and in the Strait of Hormuz: Intraseasonal to interannual variability. Continental Shelf Research, Vol. 94, p.55-70. [DOI:10.1016/j.csr.2014.12.008]
3. Chao, S.Y., Kao, T.W., and Al‐Hajri, K.R., (1992), A numerical investigation of circulation in the Arabian Gulf. Journal of Geophysical Research: Oceans, Vol. 97, p.11219-11236. [DOI:10.1029/92JC00841]
4. Reynolds, R.M., (1993), Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman-Results from the Mt Mitchell expedition. Marine Pollution Bulletin, Vol. 27, p.35-59. [DOI:10.1016/0025-326X(93)90007-7]
5. Thoppil, P.G., and Hogan, P.J., (2010b), Persian Gulf response to a wintertime shamal wind event. Deep Sea Research Part I: Oceanographic Research Papers, Vol. 57, p.946-955. [DOI:10.1016/j.dsr.2010.03.002]
6. Kämpf, J., and Sadrinasab, M., (2006), The circulation of the Persian Gulf: a numerical study. Ocean Science, Vol. 2, p.27-41. [DOI:10.5194/os-2-27-2006]
7. Hosseinibalam, F., Hassanzadeh, S., and Rezaei-Latifi, A., (2011), Three-dimensional numerical modeling of thermohaline and wind-driven circulations in the Persian Gulf. Applied Mathematical Modelling, Vol. 35, p.5884-5902. [DOI:10.1016/j.apm.2011.05.040]
8. Namin, M.M., Bidokhti, A., Khaniki, A.K., Zadeh, I.H., andAzad, M.T., (2016), A Study of the Performances of Different Turbulence Schemes in Numerical Simulation of Hydrodynamics of a Semi-Closed Sea (Persian Gulf). Marine Geodesy, Vol. 39, p.141-164. [DOI:10.1080/01490419.2015.1134736]
9. Azad, M.T., and Mehrfar, H., (2017), Seasonal variation of coastal jets in the Persian Gulf using field studies. Journal of Research in Marine Sciences, Vol. 2(2), p.106-111.
10. Yao, F., and Johns, W.E., (2010), A HYCOM modeling study of the Persian Gulf: 1. Model configurations and surface circulation. Journal of Geophysical Research: Oceans, Vol. 115(C11), p.1-17. [DOI:10.1029/2009JC005781]
11. Mellor, G.L., and Yamada, T., (1982), Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, Vol. 20, p.851-875. [DOI:10.1029/RG020i004p00851]
12. Luyten, P.J., Jones, J.E., Proctor, R., Tabor, A., Tett, P., and Wild- Allen, K., (1999), COHERENS A coupled hydrodynamical-ecological model for regional and shelf seas: user documentation, MUMM Rep. Management Unit of the Mathematical Models of the North Sea.
13. Smagorinsky, J., (1963), General circulation experiments with the primitive equations: I. The basic experiment. Monthly weather review, Vol. 91, p.99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 [DOI:10.1175/1520-0493(1963)0912.3.CO;2]
14. Ezam, M., Bidokhti, A., and Javid, A., (2010), Numerical simulations of spreading of the Persian Gulf outflow into the Oman Sea. Ocean Science, Vol. 6, p.887-900. [DOI:10.5194/os-6-887-2010]
15. Alessi, C. A., H.D., Hunt, A.S., Bower. (1999), Hydrographic data from the U.S. Naval oceanographic office: Persian Gulf, southern Red sea and Arabian Sea, Woods Hole Oceanog. Institution Technical Report WHOI-99-02. [DOI:10.1575/1912/78]
16. Lardner, R., Al-Rabeh, A., Gunay, N., Hossain, M., andReynolds, R., (1993), Computation of the residual flow in the ROPME Sea Area using the Mt-Mitchell data and KFUPM. RI hydrodynamical models. Final report of the Mt-Mitchell cruise in the ROPME Sea Area, Vol., p.116-150.

ارسال پیام به نویسنده مسئول


Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.