1. A. Menon, "No Title," Naval Architecture, 2021. https://www.marineinsight.com/naval-architecture/understanding-water-jet-propulsion-working-principle-design-and-advantages/ (accessed Oct. 12, 2021).
2. Tony Buttler, Jet Prototypes of World War II: Gloster, Heinkel, and Caproni Campini's wartime jet programmes. Osprey Publishing.
3. G. Alegi, "Secondo's Slow Burner, Campini Caproni and the C.C.2," Aviat. Hist., no. 6, p. 76.
4. River King, "No Title," New Zealand narrative. https://www.nzedge.com/legends/bill-hamilton/ (accessed Mar. 11, 2021).
5. R. HATTE and H. J. DAVIS, "Selection of Hydrofoil Waterjet Propulsion Systems," J. Hydronautics, vol. 1, no. 1, pp. 12-22, Jan. 1967, doi: 10.2514/3.62747. [
DOI:10.2514/3.62747]
6. L. ARCAND and C. R. COMOLLI, "Optimization of Waterjet Propulsion for High-Speed Ships," J. Hydronautics, vol. 2, no. 1, pp. 2-8, Jan. 1968, doi: 10.2514/3.62766. [
DOI:10.2514/3.62766]
7. J. H. Brandau, "Performance of Waterjet Propulsion Systems- A Review of the State-of-the-Art," J. Hydronautics, vol. 2, pp. 61-73, 1968, [Online]. Available: https://api.semanticscholar.org/CorpusID:110077348 [
DOI:10.2514/3.62775]
8. N. Fujisawa, "Measurements of Basic Performances for Waterjet Propulsion Systems in Water Tunnel," Int. J. Rotating Mach., vol. 2, no. 1, pp. 43-50, 1995, doi: 10.1155/S1023621X95000194. [
DOI:10.1155/S1023621X95000194]
9. H. W. Oh, E. S. Yoon, K. S. Kim, and J. W. Ahn, "A practical approach to the hydraulic design and performance analysis of a mixed-flow pump for marine waterjet propulsion," Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 217, no. 6, pp. 659-664, Sep. 2003, doi: 10.1177/095765090321700610. [
DOI:10.1177/095765090321700610]
10. N. W. H. Bulten, "A breakthrough in waterjet propulsion systems," Doha Int. Marit. Def. Exhib. Conf., no. March, pp. 2-7, 2008, [Online]. Available: http://www.rusiqatar.org/attach/7B_SHIP DESIGN & MAINTENANCE - NORBERT BULTEN.pdf
11. M.-C. Kim, H.-H. Chun, H. Y. Kim, W. K. Park, and U. H. Jung, "Comparison of waterjet performance in tracked vehicles by impeller diameter," Ocean Eng., vol. 36, no. 17, pp. 1438-1445, 2009, doi:
https://doi.org/10.1016/j.oceaneng.2009.07.017 [
DOI:10.1016/j.oceaneng.2009.07.017.]
12. D. Bonaiuti, M. Zangeneh, R. Aartojarvi, and J. Eriksson, "Parametric Design of a Waterjet Pump by Means of Inverse Design, CFD Calculations and Experimental Analyses," J. Fluids Eng., vol. 132, no. 3, Mar. 2010, doi: 10.1115/1.4001005. [
DOI:10.1115/1.4001005]
13. Y. Deng, P. Zou, X. Kang, and Y. Wang, "Experimental Investigations on Non-premixed Methane-air Flames in Radial Microchannels with a Controlled Temperature Profile," Combust. Sci. Technol., vol. 194, no. 16, pp. 3318-3339, 2022, doi: 10.1080/00102202.2021.1925660. [
DOI:10.1080/00102202.2021.1925660]
14. S. Guo, J. Du, X. Ye, R. Yan, and H. Gao, "The computational design of a water jet propulsion spherical underwater vehicle," in 2011 IEEE International Conference on Mechatronics and Automation, 2011, pp. 2375-2379. doi: 10.1109/ICMA.2011.5986358. [
DOI:10.1109/ICMA.2011.5986358]
15. C. Yue, S. Guo, X. Lin, and J. Du, "Analysis and improvement of the water-jet propulsion system of a spherical underwater robot," in 2012 IEEE International Conference on Mechatronics and Automation, 2012, pp. 2208-2213. doi: 10.1109/ICMA.2012.6285686. [
DOI:10.1109/ICMA.2012.6285686]
16. M. Altosole, G. Benvenuto, M. Figari, and U. Campora, "Dimensionless numerical approaches for the performance prediction of marine waterjet propulsion units," Int. J. Rotating Mach., vol. 2012, no. i, 2012, doi: 10.1155/2012/321306. [
DOI:10.1155/2012/321306]
17. M. Kandasamy et al., "Simulation based design optimization of waterjet propelled Delft catamaran," Int. Shipbuild. Prog., vol. 60, pp. 277-308, 2013, doi: 10.3233/ISP-130098.
18. P. Ghadimi, R. Shademani, and M. Y. Fard, "Performance assessment of the waterjet propulsion system through a combined analytical and numerical approach," Int. J. Phys., vol. 1, no. 2, pp. 22-27, 2013, doi: 10.12691/ijp-1-2-1.
19. Y. Ni, W. Liu, Z. Shen, and X. Pan, "Thrust characteristics and nozzle role of water jet propulsion," Int. J. Fluid Mach. Syst., vol. 10, no. 1, pp. 47-53, 2017, doi: 10.5293/IJFMS.2017.10.1.047. [
DOI:10.5293/IJFMS.2017.10.1.047]
20. J. Gong, C. Guo, C. Wang, T. Wu, and K. Song, "Analysis of waterjet-hull interaction and its impact on the propulsion performance of a four-waterjet-propelled ship," Ocean Eng., vol. 180, pp. 211-222, 2019, doi:
https://doi.org/10.1016/j.oceaneng.2019.04.002 [
DOI:10.1016/j.oceaneng.2019.04.002.]
21. R. Huang, Y. Dai, X. Luo, Y. Wang, and C. Huang, "Multi-objective optimization of the flush-type intake duct for a waterjet propulsion system," Ocean Eng., vol. 187, p. 106172, 2019, doi:
https://doi.org/10.1016/j.oceaneng.2019.106172 [
DOI:10.1016/j.oceaneng.2019.106172.]
22. C. Wang et al., "Numerical Simulation on Hydraulic Characteristics of Nozzle in Waterjet Propulsion System," Processes, vol. 7, no. 12, 2019, doi: 10.3390/pr7120915. [
DOI:10.3390/pr7120915]
23. W. Jiao, L. Cheng, D. Zhang, B. Zhang, Y. Su, and C. Wang, "Optimal Design of Inlet Passage for Waterjet Propulsion System Based on Flow and Geometric Parameters," Adv. Mater. Sci. Eng., vol. 2019, no. 1, p. 2320981, Jan. 2019, doi:
https://doi.org/10.1155/2019/2320981 [
DOI:10.1155/2019/2320981.]
24. L. Zhang, J. N. Zhang, Y. C. Shang, G. X. Dong, and W. M. Chen, "A Practical approach to the assessment of waterjet propulsion performance: The case of a waterjet-propelled trimaran," Polish Marit. Res., vol. 26, no. 4, pp. 27-38, 2020, doi: 10.2478/pomr-2019-0063. [
DOI:10.2478/pomr-2019-0063]
25. I. Pinheiro De Araújo Costa and F. S. Gomes, "Comparative analysis between waterjet and conventional propulsion: A new possibility for use in Brazilian Navy Ships," ICPR-Americas 20230 - Gen. Sess., pp. 1-14, 2020.