Write your message

XML Persian Abstract Print


1- Faculty of Mechanical Engineering, Faculties of Engineering, University of Tehran
2- The Ohio State University, Columbus,
Abstract:   (531 Views)

This research presents a comprehensive data-driven and modeling-based approach to facilitate and improve the design process of waterjet propulsion systems. Initially, a comprehensive statistical design model is developed by extensively reviewing the existing literature and collecting experimental data from commercial examples. Subsequently, two conceptual design algorithms are proposed based on this model to streamline the initial design process. The accuracy and validity of these algorithms are evaluated by comparing their results with available experimental data. Finally, as a case study, a conceptual design of a 500 kW waterjet propulsion system is carried out using these algorithms. The results of this research demonstrate that the proposed method is an efficient and accurate approach for the conceptual design of waterjet propulsion systems. By combining statistical analysis and modeling, this method enables rapid and accurate estimation of design parameters. Additionally, by providing a systematic framework, it assists designers in achieving optimal designs.

Full-Text [PDF 910 kb]   (226 Downloads)    
Type of Study: Research Paper | Subject: Main Engine & Electrical Equipments
Received: 2024/11/27 | Accepted: 2025/03/3

References
1. A. Menon, "No Title," Naval Architecture, 2021. https://www.marineinsight.com/naval-architecture/understanding-water-jet-propulsion-working-principle-design-and-advantages/ (accessed Oct. 12, 2021).
2. Tony Buttler, Jet Prototypes of World War II: Gloster, Heinkel, and Caproni Campini's wartime jet programmes. Osprey Publishing.
3. G. Alegi, "Secondo's Slow Burner, Campini Caproni and the C.C.2," Aviat. Hist., no. 6, p. 76.
4. River King, "No Title," New Zealand narrative. https://www.nzedge.com/legends/bill-hamilton/ (accessed Mar. 11, 2021).
5. R. HATTE and H. J. DAVIS, "Selection of Hydrofoil Waterjet Propulsion Systems," J. Hydronautics, vol. 1, no. 1, pp. 12-22, Jan. 1967, doi: 10.2514/3.62747. [DOI:10.2514/3.62747]
6. L. ARCAND and C. R. COMOLLI, "Optimization of Waterjet Propulsion for High-Speed Ships," J. Hydronautics, vol. 2, no. 1, pp. 2-8, Jan. 1968, doi: 10.2514/3.62766. [DOI:10.2514/3.62766]
7. J. H. Brandau, "Performance of Waterjet Propulsion Systems- A Review of the State-of-the-Art," J. Hydronautics, vol. 2, pp. 61-73, 1968, [Online]. Available: https://api.semanticscholar.org/CorpusID:110077348 [DOI:10.2514/3.62775]
8. N. Fujisawa, "Measurements of Basic Performances for Waterjet Propulsion Systems in Water Tunnel," Int. J. Rotating Mach., vol. 2, no. 1, pp. 43-50, 1995, doi: 10.1155/S1023621X95000194. [DOI:10.1155/S1023621X95000194]
9. H. W. Oh, E. S. Yoon, K. S. Kim, and J. W. Ahn, "A practical approach to the hydraulic design and performance analysis of a mixed-flow pump for marine waterjet propulsion," Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 217, no. 6, pp. 659-664, Sep. 2003, doi: 10.1177/095765090321700610. [DOI:10.1177/095765090321700610]
10. N. W. H. Bulten, "A breakthrough in waterjet propulsion systems," Doha Int. Marit. Def. Exhib. Conf., no. March, pp. 2-7, 2008, [Online]. Available: http://www.rusiqatar.org/attach/7B_SHIP DESIGN & MAINTENANCE - NORBERT BULTEN.pdf
11. M.-C. Kim, H.-H. Chun, H. Y. Kim, W. K. Park, and U. H. Jung, "Comparison of waterjet performance in tracked vehicles by impeller diameter," Ocean Eng., vol. 36, no. 17, pp. 1438-1445, 2009, doi: https://doi.org/10.1016/j.oceaneng.2009.07.017 [DOI:10.1016/j.oceaneng.2009.07.017.]
12. D. Bonaiuti, M. Zangeneh, R. Aartojarvi, and J. Eriksson, "Parametric Design of a Waterjet Pump by Means of Inverse Design, CFD Calculations and Experimental Analyses," J. Fluids Eng., vol. 132, no. 3, Mar. 2010, doi: 10.1115/1.4001005. [DOI:10.1115/1.4001005]
13. Y. Deng, P. Zou, X. Kang, and Y. Wang, "Experimental Investigations on Non-premixed Methane-air Flames in Radial Microchannels with a Controlled Temperature Profile," Combust. Sci. Technol., vol. 194, no. 16, pp. 3318-3339, 2022, doi: 10.1080/00102202.2021.1925660. [DOI:10.1080/00102202.2021.1925660]
14. S. Guo, J. Du, X. Ye, R. Yan, and H. Gao, "The computational design of a water jet propulsion spherical underwater vehicle," in 2011 IEEE International Conference on Mechatronics and Automation, 2011, pp. 2375-2379. doi: 10.1109/ICMA.2011.5986358. [DOI:10.1109/ICMA.2011.5986358]
15. C. Yue, S. Guo, X. Lin, and J. Du, "Analysis and improvement of the water-jet propulsion system of a spherical underwater robot," in 2012 IEEE International Conference on Mechatronics and Automation, 2012, pp. 2208-2213. doi: 10.1109/ICMA.2012.6285686. [DOI:10.1109/ICMA.2012.6285686]
16. M. Altosole, G. Benvenuto, M. Figari, and U. Campora, "Dimensionless numerical approaches for the performance prediction of marine waterjet propulsion units," Int. J. Rotating Mach., vol. 2012, no. i, 2012, doi: 10.1155/2012/321306. [DOI:10.1155/2012/321306]
17. M. Kandasamy et al., "Simulation based design optimization of waterjet propelled Delft catamaran," Int. Shipbuild. Prog., vol. 60, pp. 277-308, 2013, doi: 10.3233/ISP-130098.
18. P. Ghadimi, R. Shademani, and M. Y. Fard, "Performance assessment of the waterjet propulsion system through a combined analytical and numerical approach," Int. J. Phys., vol. 1, no. 2, pp. 22-27, 2013, doi: 10.12691/ijp-1-2-1.
19. Y. Ni, W. Liu, Z. Shen, and X. Pan, "Thrust characteristics and nozzle role of water jet propulsion," Int. J. Fluid Mach. Syst., vol. 10, no. 1, pp. 47-53, 2017, doi: 10.5293/IJFMS.2017.10.1.047. [DOI:10.5293/IJFMS.2017.10.1.047]
20. J. Gong, C. Guo, C. Wang, T. Wu, and K. Song, "Analysis of waterjet-hull interaction and its impact on the propulsion performance of a four-waterjet-propelled ship," Ocean Eng., vol. 180, pp. 211-222, 2019, doi: https://doi.org/10.1016/j.oceaneng.2019.04.002 [DOI:10.1016/j.oceaneng.2019.04.002.]
21. R. Huang, Y. Dai, X. Luo, Y. Wang, and C. Huang, "Multi-objective optimization of the flush-type intake duct for a waterjet propulsion system," Ocean Eng., vol. 187, p. 106172, 2019, doi: https://doi.org/10.1016/j.oceaneng.2019.106172 [DOI:10.1016/j.oceaneng.2019.106172.]
22. C. Wang et al., "Numerical Simulation on Hydraulic Characteristics of Nozzle in Waterjet Propulsion System," Processes, vol. 7, no. 12, 2019, doi: 10.3390/pr7120915. [DOI:10.3390/pr7120915]
23. W. Jiao, L. Cheng, D. Zhang, B. Zhang, Y. Su, and C. Wang, "Optimal Design of Inlet Passage for Waterjet Propulsion System Based on Flow and Geometric Parameters," Adv. Mater. Sci. Eng., vol. 2019, no. 1, p. 2320981, Jan. 2019, doi: https://doi.org/10.1155/2019/2320981 [DOI:10.1155/2019/2320981.]
24. L. Zhang, J. N. Zhang, Y. C. Shang, G. X. Dong, and W. M. Chen, "A Practical approach to the assessment of waterjet propulsion performance: The case of a waterjet-propelled trimaran," Polish Marit. Res., vol. 26, no. 4, pp. 27-38, 2020, doi: 10.2478/pomr-2019-0063. [DOI:10.2478/pomr-2019-0063]
25. I. Pinheiro De Araújo Costa and F. S. Gomes, "Comparative analysis between waterjet and conventional propulsion: A new possibility for use in Brazilian Navy Ships," ICPR-Americas 20230 - Gen. Sess., pp. 1-14, 2020.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.