پیام خود را بنویسید
دوره 20، شماره 44 - ( 7-1403 )                   جلد 20 شماره 44 صفحات 62-56 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yazdi K, Karimi R, Zarenezhad Ashkezari A, Gil V. Numerical simulation of a military ship model to analysis the impact of Sonar-dome on the hull resistance. Marine Engineering 2024; 20 (44) :56-62
URL: http://marine-eng.ir/article-1-1056-fa.html
یزدی کاوه، کریمی رسول، زارع نژاد اشکذری عباس، گیل ولی الله. شبیه‌سازی عددی مدلِ یک کشتی نظامی به‌منظور بررسی تاثیر برجستگی سونار برروی مقاومت بدنه آن. مهندسی دریا. 1403; 20 (44) :56-62

URL: http://marine-eng.ir/article-1-1056-fa.html


1- دانشگاه علوم دریایی امام خمینی (ره)
2- استادیار دانشگاه علوم دریایی امام خمینی (ره)
3- دانشگاه صنعتی امیرکبیر
چکیده:   (680 مشاهده)
محاسبه مقاومت بدنه شناور، یکی از مهمترین بخش‌ها در طراحی آن است. یکی از روش‌های مرسوم برای محاسبه مقاومت بدنه شناور، تست‌ تجربی حوضچه کشش است. استفاده از تست‌های حوضچه کشش نیازمند ساخت مدل دقیقی از شناور مورد نظر است. در این مقاله، شبیه‌سازی دینامیک سیالات محاسباتی به روی یک شناور نظامی، با استفاده از نرم‌افزار انسیس فلوئنت انجام شده و سپس با نتایج آزمایش حوضچه کشش، که در همین پژوهش صورت گرفته است، مقایسه شده است. برای انجام تست حوضچه کشش، ابتدا هندسه شناور مورد نظر در نرم‌افزار کتیا مدل‌سازی و سپس با استفاده از پرینتر سه‌بعدی ساخته شد. مقایسه نتایج مقاومت تجربی و عددی نشان می‌دهد که تطابق خوبی بین نتایج عددی و تجربی وجود دارد. بنابراین می‌توان نتیجه‌گیری کرد که مدل دینامیک سیالات محاسباتی توسعه‌داده‌شده عملکرد صحیحی دارد. سپس مدل شبیه‌سازی‌ شده به همراه برجستگی سونار توسعه داده شد. نتایج نشان می‌دهد که وجود برجستگی سونار، سبب می‌شود که مقاومت بدنه شناور در سرعت‌های بیش از 8.74 گره دریایی به صورت خطی افزایش پیدا کند.
متن کامل [PDF 1225 kb]   (242 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: هیدرودینامیک کشتی
دریافت: 1402/6/12 | پذیرش: 1403/9/29

فهرست منابع
1. Webster, W.C., (1988), Prediction and measurement of the performance of free-flooding ship antirolling tanks, Society of Naval Architects and Marine Engineers-Transactions, Vol.96, p.1386-1395.
2. Voxakis, P., (2012), Ship hull resistance calculations using cfd methods, Massachusetts Institute of Technology, p.77-78.
3. Deng, R., Wang, S., Hu, Y., Wang, Y., Wu, T., (2021), The effect of hull form parameters on the hydrodynamic performance of a bulk carrier, Journal of Marine Science and Engineering, Vol.9, p.373. [DOI:10.3390/jmse9040373]
4. Shamshiri M., Moonesan M., (2021), "Investigation of the bulbous bow effect on the resistance of a container ship by CFD method" Journal of marine engineering, Vol. 33, P. 111-121
5. Lu, Y., Xin C., An-kang, H., (2016) A hydrodynamic optimization design methodology for a ship bulbous bow under multiple operating conditions, Engineering Applications of Computational Fluid Mechanics 10.1, pp330-345. [DOI:10.1080/19942060.2016.1159987]
6. Yang, K, Yonghwan K., (2017) Numerical analysis of added resistance on blunt ships with different bow shapes in short wave, Journal of Marine Science and Technology 22.2, pp 245-258. [DOI:10.1007/s00773-016-0407-9]
7. Yu, Y. Jin-Won, H., (2017) Bow hull-form optimization in waves of a 66,000 DWT bulk carrier, International Journal of Naval Architecture and Ocean Engineering 9.5 pp 499-508. [DOI:10.1016/j.ijnaoe.2017.01.006]
8. Hong, Z. C., (2017) Self-blending method for hull form modification and optimization, Ocean Engineering 146, pp 59-69. [DOI:10.1016/j.oceaneng.2017.09.048]
9. Lee, Y., Cheol-Min, C., (2019) Effect of bow hull forms on the resistance performance in calm water and waves for 66k DWT bulk carrier, International Journal of Naval Architecture and Ocean Engineering 11.2, pp723-735. [DOI:10.1016/j.ijnaoe.2019.02.007]
10. Ravenna, R., (2022), Predicting the effect of hull roughness on ship resistance using a fully turbulent flow channel, Journal of Marine Science and Engineering, Vol.10, 1863. [DOI:10.3390/jmse10121863]
11. Selim, B., Sercan, E., (2023), Optimizing ship speed depending on cargo and wind-sea conditions for sustainable blue growth and climate change mitigation, Journal of Marine Science and Technology, Vol.28, p.659-674. [DOI:10.1007/s00773-023-00947-4] [PMID] []
12. Demirel, Y.K., (2017), Predicting the effect of biofouling on ship resistance using CFD. Applied Ocean Research, Vol.62, p.100-118. [DOI:10.1016/j.apor.2016.12.003]
13. Wehausen, J.V., (1973), The wave resistance of ships, Advances in Applied Mechanics, Vol.13, p.93-245. [DOI:10.1016/S0065-2156(08)70144-3]
14. Doust, D.J., Obrien, T.P., (1959), Resistance and propulsion of trawlers, Transaction NEC, Vol.75, p.355.
15. Hughes, G., (1966), An analysis of ship model resistance into viscous and wave component, NPL, Part1 and 2.
16. Havelock, T.H., (1909), The wave-making resistance of ships: a theoretical and practical analysis, Publisher: Royal Society, Vol.82, doi: https://doi.org/10.1098/rspa.1909.0033 [DOI:10.1098/rspa.1909.0033.]
17. Luke, W.J., (2021), Experimental investigation on wake and thrust deduction values, Transaction S.N.A.
18. Harvald, S.A., (1950), Wake of merchant ships. The Danish technical press, Doctors Thesis, Copenhagen, Denmark.
19. Astrup, N.C., (1954), On the influence of form upon ski friction resistance, Publisher: SSPA, Vol.31, 10. Granville.
20. White F.M., (2016), "Fluid Mechanics", 8th edition, McGraw Hill Publications, Chapter 4.
21. Molland F., Turnock R., (2017), "Ship resistance and propulsion", Cambridge University Press 978-1-107-14206-0. [DOI:10.1017/9781316494196]
22. S. W. Instructions D. Indication, (2002), ITTC - Recommended Procedures and Guidelines ITTC - Recommended Procedures and Guidelines, Revision, p.1-10.
23. ITTC, (2008), ITTC 2008 - 25th International Towing Tank Conference, Proceedings. Vol.1. 2008.
24. ITTC, (2014), ITTC - Recommended Procedures and Guidelines - Practical guidelines for ship CFD applications. 7.5-03-02-03 (Revision 01).
25. ANSYS Fluent Theory Guide, (2013), ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317, November.
26. Rhie, C., Chow, W., (1983), Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA journal, Vol.21(11), p.1525-1532. [DOI:10.2514/3.8284]
27. Liu, T.L., Guo, Z.M., (2013), Analysis of wave spectrum for submerged bodies moving near the free surface, Ocean Engineering, Vol.58(0), p.239-251. [DOI:10.1016/j.oceaneng.2012.10.003]
28. Nematollahi, A., Dadvand, A., Dawoodian, M., (2015), An axisymmetric underwater vehicle-free surface interaction: A numerical study, Ocean Engineering, Vol.96, p.205-214. [DOI:10.1016/j.oceaneng.2014.12.028]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.