Write your message
Volume 15, Issue 29 (4-2019)                   Marine Engineering 2019, 15(29): 25-38 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Marashian S M, Adjami M, Rezaee Mazyak A. Numerical Simulation of Wave Overtopping Over Composite Berm Breakwater . Marine Engineering 2019; 15 (29) :25-38
URL: http://marine-eng.ir/article-1-702-en.html
1- Shahrood University of Technology
2- Tarbiat Modares University
Abstract:   (4842 Views)
Breakwaters have changed a lot during their design history. Overtopping is an important parameter that its evaluation and reduction has always been noticed. In this study, the wave overtopping of composite berm breakwater as a new conceptual structure has been investigated numerical modeling was performed using FLOW-3D software. Then, based on  a laboratory model conducted by Losada et al, calibration and verification was done for our numerical model. After numerical model  performance confidence, composite berm breakwater was designed in three types. The wave overtopping of the composite berm breakwater was analysed  and compared with rubble mound and horizontally caisson breakwaters. The results show a decrease of 84.01% of the overtopping in the composit berm breakwater compared to the rubble mound breakwater. Also, the overtopping in the composite berm breakwater had a 61.42% reduction compared to the horizontal caisson breakwater.
Full-Text [PDF 1882 kb]   (2058 Downloads)    
Type of Study: Research Paper | Subject: Marine Structures and near shore
Received: 2018/11/30 | Accepted: 2019/05/14

References
1. Owen, M. W. (1980). Design of seawalls allowing for wave overtopping. Report Ex, 924, 39.‏
2. Owen, M. W. (1980), The hydroulic design of seawall profiles, proc. Conf. On Shoreline Protection, ICE, London, UK: pp.185-192.
3. Bradbury, A. P., & Allsop, N. W. H. (1988). P5. Hydraulic effects of breakwater crown walls. In Design of breakwaters (pp. 385-396). Thomas Telford Publishing.‏ [DOI:10.1680/dob.13513.0028]
4. Aminti, P., & Franco, L. (1989). Wave overtopping on rubble mound breakwaters. In Coastal Engineering 1988 (pp. 770-781).‏ [DOI:10.1061/9780872626874.058]
5. van der Meer, J. W. (1995). Wave run-up and wave overtopping at dikes. Wave forces on inclined and vertical structures, ASCE.‏
6. Goda, Y. (2000). Random seas and design on marine structures. Advanced Series on Ocean Engineering, vol. 15.‏ [DOI:10.1142/3587]
7. Kobayashi, N., & Wurjanto, A. (1989). Wave overtopping on coastal structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 115(2), 235-251.‏ [DOI:10.1061/(ASCE)0733-950X(1989)115:2(235)]
8. Hu, K., Mingham, C. G., & Causon, D. M. (2000). Numerical simulation of wave overtopping of coastal structures using the non-linear shallow water equations. Coastal engineering, 41(4), 433-465.‏ [DOI:10.1016/S0378-3839(00)00040-5]
9. Losada, I. J., Lara, J. L., Guanche, R., & Gonzalez-Ondina, J. M. (2008). Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal engineering, 55(1), 47-62.‏ [DOI:10.1016/j.coastaleng.2007.06.003]
10. Dentale, F., Donnarumma, G., & Pugliese Carratelli, E. (2013, September). Rubble mound breakwater: run-up, reflection and overtopping by numerical 3D simulation. In ICE Conference (pp. 120-130).‏
11. Du, Y., Pan, S., & Chen, Y. (2010). Modelling the effect of wave overtopping on nearshore hydrodynamics and morphodynamics around shore-parallel breakwaters. Coastal Engineering, 57(9), 812-826.‏ [DOI:10.1016/j.coastaleng.2010.04.005]
12. Yeganeh-Bakhtiary, A., Hajivalie, F., & Hashemi-Javan, A. (2010). Steady streaming and flow turbulence in front of vertical breakwater with wave overtopping. Applied Ocean Research, 32(1), 91-102.‏ (In Persian) [DOI:10.1016/j.apor.2010.03.002]
13. Andersen, T. L., Burcharth, H. F., & Gironella, X. (2011). Comparison of new large and small scale overtopping tests for rubble mound breakwaters. Coastal Engineering, 58(4), 351-373.‏ [DOI:10.1016/j.coastaleng.2010.12.004]
14. Vicinanza, D., Contestabile, P., Nørgaard, J. Q. H., & Andersen, T. L. (2014). Innovative rubble mound breakwaters for overtopping wave energy conversion. Coastal Engineering, 88, 154-170.‏ [DOI:10.1016/j.coastaleng.2014.02.004]
15. Moghim, M. N., Boroujeni, R. F., & Tabari, M. M. R. (2015). Wave overtopping on reshaping berm breakwaters based on wave momentum flux. Applied Ocean Research, 53, 23-30.‏ (In Persian) [DOI:10.1016/j.apor.2015.07.008]
16. Zanuttigh, B., Formentin, S. M., & van der Meer, J. W. (2016). Prediction of extreme and tolerable wave overtopping discharges through an advanced neural network. Ocean Engineering, 127, 7-22.‏ [DOI:10.1016/j.oceaneng.2016.09.032]
17. Ghasemi, A. Shafee Far, M and Panahi, R. (2016). Numerical Simulation of Wave Overtopping From Armour Breakwater by Considering Porous Effect, Jurnal of Marin Engineering, vol. 11, no. 22. (In Persian)
18. Milanian, F., Niri, M. Z., & Najafi-Jilani, A. (2017). Effect of hydraulic and structural parameters on the wave run-up over the berm breakwaters. International Journal of Naval Architecture and Ocean Engineering, 9(3), 282-291.‏ [DOI:10.1016/j.ijnaoe.2016.10.001]
19. Pillai, K., Etemad-Shahidi, A., & Lemckert, C. (2017). Wave overtopping at berm breakwaters: Experimental study and development of prediction formula. Coastal Engineering, 130, 85-102.‏ [DOI:10.1016/j.coastaleng.2017.10.004]
20. Tsai, C. P., Ko, C. H., & Chen, Y. C. (2018). Investigation on performance of a modified breakwater-integrated OWC wave energy converter. Sustainability, 10(3), 643.‏ [DOI:10.3390/su10030643]
21. Amirabadi R, Rezaee mazyak A, Ghasemi A.(2018). Numerical Modeling Investigation of Irregular Wave Interaction with Perforated Caisson Breakwater, Journal Of Marine Engineering, 14 (27) :69-79. (In Persian)
22. Sasikumar, A., Kamath, A., Musch, O., Bihs, H., & Arntsen, Ø. A. (2019). Numerical Modeling of Berm Breakwater Optimization With Varying Berm Geometry Using REEF3D. Journal of Offshore Mechanics and Arctic Engineering, 141(1), 011801.‏ [DOI:10.1115/1.4040508]
23. Hirt, C. W., & Nicholas, B. (1998). Flow-3D User's Manual. Flow Science Inc.
24. F. Science, FLOW-3D Documentation, (2012).
25. Samani, H. M., Samani, J. M., & Shaiannejad, M. (2003). Reservoir routing using steady and unsteady flow through rockfill dams. Journal of Hydraulic Engineering, 129(6), 448-454.‏ [DOI:10.1061/(ASCE)0733-9429(2003)129:6(448)]
26. PIANC, W. (2003). State-of-the-Art of Designing and Constructing Berm Breakwaters. Report of working group, 40.‏
27. Sigurdarson, S., Van Der Meer, J. W., Burcharth, H. F., & Sørensen, J. D. (2009). Optimum safety levels and design rules for the Icelandic-type berm breakwater. In Coastal Structures 2007: (In 2 Volumes) (pp. 53-64).‏ [DOI:10.1142/9789814282024_0005]
28. Hall, K. and Kao, S. (1991). A Study of the Stability of Dynamically Stable Breakwaters, Canadian Journal of Civil Engineering, Vol. 18, pp.916-925. [DOI:10.1139/l91-113]
29. Moghim, M. N., Shafieefar, M., Tørum, A., & Chegini, V. (2011). A new formula for the sea state and structural parameters influencing the stability of homogeneous reshaping berm breakwaters. Coastal Engineering, 58(8), 706-721.‏ [DOI:10.1016/j.coastaleng.2011.03.006]
30. Torum, A., Krogh, S. R., Bjordal, S., Fjeld, S., Archetti, R., & Jacobsen, A. (1999). Design criteria and design procedures for berm breakwaters. In Proc., Coastal Structures' 99 (pp. 331-341). Rotterdam, The Netherlands: Balkema.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.