Write your message
Volume 16, Issue 32 (11-2020)                   Marine Engineering 2020, 16(32): 21-34 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdollahi D, Farzaneh S, Sharifi M A. Time series of water surface for estimating of mean water level in shallow areas. Marine Engineering 2020; 16 (32) :21-34
URL: http://marine-eng.ir/article-1-839-en.html
1- Surveying and Geomatics Engineering Faculty of Engineering University of Tehran.
2- School of Surveying and Geomatics Engineering Faculty of Engineering University of Tehran
3- School of Surveying and Geomatics Engineering Faculty of Engineering University of Tehran.
Abstract:   (2989 Views)
standard processing schemes of altimetry lead to the solution with relatively lower accuracy in shallow waters and inland water bodies. In order to get more accurate solution one needs to process the data with more specific processing algorithms. In this paper, we intend to review some retracking methods for shallow water level determination. Moreover, we introduce a new method for time series of water level using the well-known outlier detection of Baarda hypothesis testing. The achieved results are then compared with the dataset which is publicly available from Technical University of Denmark (TUD) as the standard data. The results show that the water levels estimated by the Baarda test are consistent with those of the robust mean water level. The accuracy of results obtained by the new method is at the same order of the robust mean water levels. the differences of baarda method with the standard method and tidegauge data in optimistic method are 2.7 and 28 cm.
Full-Text [PDF 1617 kb]   (1047 Downloads)    
Type of Study: Research Paper | Subject: Environmental Study
Received: 2020/06/23 | Accepted: 2020/08/11

References
1. Heidi Villadsen , Xiaoli Deng , Ole B. Andersen . (2016). Improved inland water levels from SAR altimetry using novel empirical and physical retrackers. [DOI:10.1016/j.jhydrol.2016.03.051]
2. Maillard, P., Bercher, N., Calmant, S .(2015). New processing approaches on the retrieval of water levels in Envisat and SARAL radar altimetry over rivers: a case study of the Sao Francisco River, Brazil. Remote Sens. Environ., 226-241. [DOI:10.1016/j.rse.2014.09.027]
3. Marcello Passaro , Paolo Cipollini , Stefano Vignudelli . (2014) . ALES: A multi- mission adaptive subwaveform retracker for coastal and open ocean altimetry Remote Sensing of Environment. [DOI:10.1016/j.rse.2014.02.008]
4. Stefano Vignudelli . (2010) . coastal altimetry . ISBN: 978-3-642-12795-3
5. M. Khaki, E. Forootan & M.A. Sharifi . (2014) . Satellite radar altimetry waveform retracking over the Caspian http://www.tandfonline.com/loi/tres20 [DOI:10.1080/01431161.2014.951741]
6. Lifeng Bao , Yang Lu, Yong Wang . (2009) . Improved retracking algorithm for oceanic altimeter waveforms.
7. David T. Sandwell , Walter H. F. Smith. (2005) . Retracking ERS-1 altimeter waveforms for optimal gravity field recovery. [DOI:10.1111/j.1365-246X.2005.02724.x]
8. Jinyun Guo, Xiaotao Chang, Yonggang Gao, Jialong Sun, and Cheinway Hwang . (2009) . Lake Level Variations Monitored With Satellite Altimetry Waveform Retracking.
9. R. Keith Raney . (1998) . The Delay/Doppler Radar Altimeter . IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36,. 5 [DOI:10.1109/36.718861]
10. Chris Ray, Cristina Martin-Puig, Maria Paola Clarizia . (2015) . SAR Altimeter Backscattered Waveform Model . IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 2 [DOI:10.1109/TGRS.2014.2330423]
11. M. Kleinherenbrink , P.G. Ditmar, R.C. Lindenbergh . (2014) . Retracking Cryosat data in the SARIn mode and robust lake level extraction. [DOI:10.1016/j.rse.2014.05.014]
12. Karina Nielsen , Lars Stenseng, Ole B. Andersen . (2015) . Validation of CryoSat-2 SAR mode based lake levels. [DOI:10.1016/j.rse.2015.10.023]
13. Catherine Bouzinac . (2012) . CryoSat Product Handbook.
14. Baarda W. (1968) . A testing procedure for use in geodetic networks". Publ 2(5), Netherlands Geodetic Commission, Delft.
15. Teunissen P. J. G. (2000) . Testing Theory: An introduction. Website http://www.vssd.nl:Delft University Press.Series on Mathematical Geodesy and Positioning.
16. Teunissen P. J. G., Simons D.G., Tiberius C.C.J.M . (2005) . Probability and observation theory. Lecture notes AE2-E01, Faculty of Aerospace Engineering, Delft University of Technology, the Netherlands.
17. DJ Wingham, CR Francis, S Baker, C Bouzinac . (2006) . CryoSat: A mission to determine the fluctuations in Earth's land and marine ice fields. Advances in Space Research Volume 37, Issue 4, 2006, Pages 841-871. [DOI:10.1016/j.asr.2005.07.027]
18. Davis CH . (1997) . A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeter. IEEE Trans Geosci Remote Sensing 35(4). [DOI:10.1109/36.602540]
19. Wingham DJ, Rapley CG, Griffiths H . (1986) . New techniques in satellite tracking system. In: Proceedings of IGARSS' 86 symposium, Zurich, pp 1339-1344
20. Maulik Jain . (2015) . Improved sea level determination in the Arctic regions through development of tolerant altimetry retracking.
21. Seelye Martin . (2004) . an introduction to ocean remote sensing . Cambridge University Press.
22. Ulaby, F. T., Moore, R. K., & Fung, A. K. (1982). Microwave Remote Sensing: Active and Passive, Volume 2, Radar Remote Sensing and Surface and Emission Theory Boston, MA: Addison-Wesley.
23. J. L. MacArthur, C. C. Kilgus, C. A. Twigg, and P. V. K . Brown . (1989) . Evolution of the satellite radar altimeter, Johns Hopkins APL Tech. Dig., vol. 10, no. 4, pp. 405-413,
24. Hwang C, Guo JY, Deng XL, Hsu HY, Liu YT . (2006) . Coastal gravity anomalies from retracked Geosat/GM altimetry: improvement, limitation and the role of airborne gravity data. J Geod 80:204-216. [DOI:10.1007/s00190-006-0052-x]
25. Davis CH . (1995) . Growth of the Greenland ice sheet: a performance assessment of altimeter retracking algorithms. IEEE Trans Geosci Remote Sens 33(5):1108-1116. [DOI:10.1109/36.469474]
26. Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J.,Magnusson, A., Maunder, M. N., Sibert, J. . (2012) . AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software, 27(2), 233-249. [DOI:10.1080/10556788.2011.597854]
27. Kristensen, K. . (2013) . . TMB: general random effect model builder tool inspired by ADMB. R package version 1.0 (URL tmb-project.org).
28. Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., & Bell, B. (2015) . TMB: Automatic Differentiation and Laplace Approximation, arXiv preprintar Xiv:1509.00660.
29. roman buss . (2017) . Comparison between gravity gradients from dense CryoSat-2 altimetry and from shipborne gradiometry . Fakultät Luft-und Raumfahrttechnik und Geodäsie.
30. Lee-Lueng Fu , Anny Cazenave . (2000). Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications .. Academic Press
31. Surajit Ghosh, Praveen Thakur, Vaibhav Garg. (2015) . SARAL/AltiKa Waveform Analysis to Monitor Inland Water Levels: A Case Study of Maithon Reservoir, Jharkhand, India
32. D. Massonnet, K.L. Feigl, . (1998) . "Radar interferometry and its application to changes in the earth's surface." Reviews of Geophysics, v. 36, p. 441-500. [DOI:10.1029/97RG03139]
33. Reza Arabsahebi , Behzad Voosoghi , Mohammad J. Tourian . (2018) . The Inflection-Point Retracking Algorithm: Improved Jason-2 Sea Surface Heights in the Strait of Hormuz , Marine Geodesy, 41(4), pp.331-352. [DOI:10.1080/01490419.2018.1448029]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.