Write your message
Volume 15, Issue 29 (4-2019)                   Marine Engineering 2019, 15(29): 11-24 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini A, Nasiri B. Determine the Vulnerable Points of Pile-Supported Wharves against the Blast Load – Case Study. Marine Engineering 2019; 15 (29) :11-24
URL: http://marine-eng.ir/article-1-688-en.html
1- Malek Ashtar University of Technology
Abstract:   (3890 Views)
Ports are among the important economic, military and political bottlenecks for countries that have the gift of maritime boundary. One of the main structures in ports is the wharves, which are important for many uses. Thereby, design and performance of wharves under critical conditions and the enemy's military and terrorist threats is indispensable for passive defense. In this research, the responses and the vulnerable points of pile-supported wharves against the underwater blast load are being investigated. For this purpose, one of the pile-supported wharves in south of Iran is selected and one of its frames is studied. For modeling, Abaqus software and its Undex method are used. The method used to simulate the pile-supported wharf was first verified and, after ensuring the validity of the model, the effect of underwater explosion on the overall behavior of the structure and the effect of different parameters on the structure response were determined. Investigations have shown that, with the damage and even the withdrawal of several piles around the source of explosion, in most cases the entire structure does not go out of use, and without being removed from the operating conditions, can be repaired and upgraded it.
Full-Text [PDF 1288 kb]   (1931 Downloads)    
Type of Study: Research Paper | Subject: Marine Structures and near shore
Received: 2018/10/5 | Accepted: 2019/05/4

References
1. Wang, G. and Sherong Zhang, Sh., Mao, Yu., Hongbi, L. and Kong, Y., (2014), Investigation of the shock wave propagation characteristics and cavitation effects of underwater explosion near boundaries, Journal of Applied Ocean Research, Vol.46, p.40-53. [DOI:10.1016/j.apor.2014.02.003]
2. Wang, Ch., Qiu, Sh. and Eliasson, V., (2014), Investigation of shock wave focusing in water in a logarithmic spiral duct, Journal of Ocean Engineering, Vol.102, p.174-184. [DOI:10.1016/j.oceaneng.2014.09.012]
3. Li, J. and Rong, J.L., (2012), Experimental and numerical investigation of the dynamic response of structures subjected to underwater explosion, European Journal of Mechanics, Vol.32, p.59-69. [DOI:10.1016/j.euromechflu.2011.09.009]
4. Hung, C.F., Lin, B.J., Hwang-Fuu, J.J. and Hsu, P.Y., (2009), Dynamic response of cylindrical shell structures subjected to underwater explosion, Journal of Ocean Engineering, Vol.36, p.564-577. [DOI:10.1016/j.oceaneng.2009.02.001]
5. Jen, C.Y., (2009), Coupled acoustic-structural response of optimized ring-stiffened hull for scaled down submerged vehicle subject to underwater explosion, Theoretical and Applied Fracture Mechanics, Vol.52, p.96-110. [DOI:10.1016/j.tafmec.2009.08.006]
6. Ucar and Hakan, (2006), Dynamic response of a catamaran-hull ship subjected to underwater explosions, Thesis and Dissertation Collection, Naval Postgraduate, Monterey, California.
7. Zhang A-man, Yang Wen-shan, Yao Xiong-liang, (2012), Numerical simulation of underwater contact explosion, Applied Ocean Research, Vol.34, p.10-20. [DOI:10.1016/j.apor.2011.07.009]
8. LI Wang-hui, ZONG Zhi, SUN Lei, (2010), A numerical study of underwater explosion induced waves and their effects on nearby marine structures, Chinese Journal of Hydrodynamics.
9. Jankowiak, T. and Lodygowski, T., (2005), Identification of parameters of concrete damage plasticity constitutive model, Poznan University of Technology, Poland.
10. Abaqus, (2016), Analysis User's Manual.
11. Khan, A., (1995), Continuum Theory of Plasticity, New York John Wiley & Sons.
12. Ghalei, N. and Halboian, A.M., (2008), The behavior of three-dimensional synchronous liquid damper systems under the influence of two-dimensional stimuli using finite element method, Fourth National Congress of Civil Engineering, Tehran. (In Persian)
13. Felippa, C.A. and DeRuntz, J.A., (1991), Acoustic Fliud Volume Modeling By The Displacement Potential Formolation, whith Emphasis on the Wedge Element, Journal of computers and structures, Vol.42, p.669-686. [DOI:10.1016/0045-7949(91)90179-P]
14. Smith, P.D. and Hetherngton, J.G., (1994), Blast and ballistic loading of structures.
15. Patel .M.H, (1989), Dynamics of Offshore Structures, Butterworth.
16. Wolf, P., (1985), Dynamic Soil-Structure Interaction, Englewood Cliffs, Berkeley: Prentice-Hall.
17. Gharangiyan, R. and Mohammadzadeh, H., (2014), Numerical study of the interaction of water and submerged structures under the influence of underwater explosion, National Conference on Passive Defense in Marine Science. (In Persian)

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.