1. D. Savitsky, "Hydrodynamic Design of Planing Hulls," Mar. Technol. SNAME News, vol. 1, no. 04, pp. 71-95, 1964, doi: 10.5957/mt1.1964.1.4.71. [
DOI:10.5957/mt1.1964.1.4.71]
2. O. M. Faltinsen, Hydrodynamics of high-speed marine vehicles, vol. 9780521845. Cambridge university press, 2006. doi: 10.1017/CBO9780511546068. [
DOI:10.1017/CBO9780511546068]
3. D. Savitsky, M. F. DeLorme, and R. Datla, "Inclusion of whisker spray drag in performance prediction method for high-speed planing hulls," Mar. Technol. SNAME News, vol. 44, no. 1, pp. 35-56, 2007, doi: 10.5957/mt1.2007.44.1.35. [
DOI:10.5957/mt1.2007.44.1.35]
4. L. Larsson and E. Baba, "Ship resistance and flow computations," Adv. Fluid Mech., vol. 5, pp. 1-75, 1996.
5. D. Savitsky and M. Morabito, "Origin and characteristics of the spray patterns generated by planing hulls," Trans. - Soc. Nav. Archit. Mar. Eng., vol. 120, no. 02, pp. 306-326, 2013, doi: 10.5957/jspd.2011.27.2.63. [
DOI:10.5957/jspd.2011.27.2.63]
6. E. P. Clement, "Reduction of Planing Boat Resistance by Deflection of the Whisker Spray," 1964. [Online]. Available: https://dome.mit.edu/handle/1721.3/49020?show=full
7. L. Olin, M. Altimira, J. Danielsson, and A. Rosén, "Numerical modelling of spray sheet deflection on planing hulls," Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 231, no. 4, pp. 811-817, 2017, doi: 10.1177/1475090216682838. [
DOI:10.1177/1475090216682838]
8. J. Seo et al., "Model tests on resistance and seakeeping performance of wave-piercing high-speed vessel with spray rails," Int. J. Nav. Archit. Ocean Eng., vol. 8, no. 5, pp. 442-455, 2016, doi: 10.1016/j.ijnaoe.2016.05.010. [
DOI:10.1016/j.ijnaoe.2016.05.010]
9. M. Lakatoš, K. Tabri, A. Dashtimanesh, and H. Andreasson, "Numerical Modelling of a Planing Craft with a V-Shaped Spray Interceptor Arrangement in Calm Water," in Progress in Marine Science and Technology, IOS Press, 2020, pp. 33-42. doi: 10.3233/PMST200024. [
DOI:10.3233/PMST200024]
10. B. Molchanov, S. Lundmark, M. Fürth, and M. Green, "Experimental validation of spray deflectors for high speed craft," Ocean Eng., vol. 191, no. October, p. 106482, 2019, doi: 10.1016/j.oceaneng.2019.106482. [
DOI:10.1016/j.oceaneng.2019.106482]
11. L. Castaldi, F. Osmak, M. Green, M. Fürth, and J. Bonoli, "The effect of spray deflection on the performance of high speed craft in calm water," Ocean Eng., vol. 229, p. 108892, 2021, doi: 10.1016/j.oceaneng.2021.108892. [
DOI:10.1016/j.oceaneng.2021.108892]
12. Samuel, A. Trimulyono, P. Manik, and D. Chrismianto, "A numerical study of spray strips analysis on fridsma hull form," Fluids, vol. 6, no. 11, p. 420, 2021, doi: 10.3390/fluids6110420. [
DOI:10.3390/fluids6110420]
13. M. Lakatoš, T. Sahk, H. Andreasson, and K. Tabri, "The effect of spray rails, chine strips and V-shaped spray interceptors on the performance of low planing high-speed craft in calm water," Appl. Ocean Res., vol. 122, p. 103131, 2022, doi: 10.1016/j.apor.2022.103131. [
DOI:10.1016/j.apor.2022.103131]
14. "https://ittc.info/members/member-organisations/national-iranian-marine-laboratory-nimala/."
15. "Propulsion Committee. Final report and recommendations to the 23rd ITTC, Proceeding of Twenty-third ITTC,. (2002)."
16. N. Celik, G. Pusat, and E. Turgut, "Application of Taguchi method and grey relational analysis on a turbulated heat exchanger," Int. J. Therm. Sci., vol. 124, pp. 85-97, 2018, doi: 10.1016/j.ijthermalsci.2017.10.007. [
DOI:10.1016/j.ijthermalsci.2017.10.007]
17. A. F. Kaya and A. Acır, "Enhancing the aerodynamic performance of a Savonius wind turbine using Taguchi optimization method," Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 2, pp. 5610-5626, 2022, doi: 10.1080/15567036.2022.2088898. [
DOI:10.1080/15567036.2022.2088898]
18. F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA J., vol. 32, no. 8, pp. 1598-1605, 1994, doi: 10.2514/3.12149. [
DOI:10.2514/3.12149]
19. F. Stern, J. Yang, Z. Wang, H. Sadat-Hosseini, and M. Mousaviraad, "Computational ship hydrodynamics: Nowadays and way forward," Int. Shipbuild. Prog., vol. 60, no. 1-4, pp. 3-105, 2013, doi: 10.3233/ISP-130090.
20. X. Bi, J. Zhuang, and Y. Su, "Seakeeping analysis of planing craft under large wave height," Water (Switzerland), vol. 12, no. 4, p. 1020, 2020, doi: 10.3390/W12041020. [
DOI:10.3390/w12041020]
21. ITTC, "Practical guidelines for ship CFD applications (7.5-03-02-03). p. 1-20," 2014.
22. "ITTC, Practical guidelines for ship CFD applications, in (7.5-03-02-03). Revision-01. 2011".
23. J. Suneela, P. Krishnankutty, and V. A. Subramanian, "Hydrodynamic performance of planing craft with interceptor-flap hybrid combination," J. Ocean Eng. Mar. Energy, vol. 7, no. 4, pp. 421-438, 2021, doi: 10.1007/s40722-021-00211-0. [
DOI:10.1007/s40722-021-00211-0]
24. P. M. Carrica, R. V. Wilson, R. W. Noack, and F. Stern, "Ship motions using single-phase level set with dynamic overset grids," Comput. Fluids, vol. 36, no. 9, pp. 1415-1433, 2007, doi: 10.1016/j.compfluid.2007.01.007. [
DOI:10.1016/j.compfluid.2007.01.007]
25. A. De Marco, S. Mancini, S. Miranda, R. Scognamiglio, and L. Vitiello, "Experimental and numerical hydrodynamic analysis of a stepped planing hull," Appl. Ocean Res., vol. 64, pp. 135-154, 2017, doi: 10.1016/j.apor.2017.02.004. [
DOI:10.1016/j.apor.2017.02.004]
26. "Begovic E, Bertorello C, Mancini S. Hydrodynamic performances of small size swath craft. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike. 2015;66(4):1-22.".
27. F. De Luca, S. Mancini, S. Miranda, and C. Pensa, "An extended verification and validation study of CFD simulations for planing hulls," J. Sh. Res., vol. 60, no. 2, pp. 101-118, 2016, doi: 10.5957/JOSR.60.2.160010. [
DOI:10.5957/JOSR.60.2.160010]
28. "ITTC. Practical guidelines for ship CFD applications (75-03-02-03)p 1-20Revision-01. 2014.".
29. I. B. Celik, U. Ghia, P. J. Roache, C. J. Freitas, H. Coleman, and P. E. Raad, "Procedure for estimation and reporting of uncertainty due to discretization in CFD applications," J. Fluids Eng. Trans. ASME, vol. 130, no. 7, pp. 0780011-0780014, 2008, doi: 10.1115/1.2960953. [
DOI:10.1115/1.2960953]
30. L. F. Richardson, "IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam," Philos. Trans. R. Soc. London. Ser. A, Contain. Pap. a Math. or Phys. Character, vol. 210, no. 459-470, pp. 307-357, 1911, doi: 10.1098/rsta.1911.0009. [
DOI:10.1098/rsta.1911.0009]
31. D. Diakoulaki, G. Mavrotas, and L. Papayannakis, "Determining objective weights in multiple criteria problems: The critic method," Comput. Oper. Res., vol. 22, no. 7, pp. 763-770, 1995, doi: 10.1016/0305-0548(94)00059-H. [
DOI:10.1016/0305-0548(94)00059-H]