Write your message

XML Persian Abstract Print


1- Imam Hossein University
2- دانشگاه امام حسین
Abstract:   (118 Views)
The wet surface caused by water spray is one of the factors of creating resistance in high-speed floats. On this basis, the effect of the sprayer appendage in reducing the buoyancy resistance has been investigated and the effect of its geometric characteristics, including the bottom angle, width and number of spray rails, on the hydrodynamic components and the buoyancy resistance has been investigated using a numerical method. The results of numerical simulations have been validated with similar laboratory data for the float without appendages. Taguchi's method has proposed 18 test designs, that each test design is simulated in two general positions of spray rails (in line with the chine and parallel to the keel) for the transverse landing number of 1.99 and 3.33. The results show that the two geometric characteristics of the bottom angle and the number of sprays have a direct relationship with the increase in the landing number of the float, so that in the flight mode, the positive bottom angle with the highest number of rail sprays has caused a greater decrease in the resistance of the float, in addition to the optimal value of the width geometric characteristic The rail spray has decreased with the increase of Froud number, as a result, the width of the rail spray has an opposite relationship with the increase of Froud number. Also, spray rails parallel to the keel have a more effective role in reducing floating resistance than spray rails in line with the chine. The amount of trim and rise of the float for the spray of rails parallel to the keel is less compared to the spray of rails parallel to the chine, which reduces the possibility of longitudinal porpoising instability in the float.
Full-Text [PDF 1865 kb]   (63 Downloads)    
Type of Study: Research Paper | Subject: Ship Hydrodynamic
Received: 2024/11/14 | Accepted: 2024/12/25

References
1. D. Savitsky, "Hydrodynamic Design of Planing Hulls," Mar. Technol. SNAME News, vol. 1, no. 04, pp. 71-95, 1964, doi: 10.5957/mt1.1964.1.4.71. [DOI:10.5957/mt1.1964.1.4.71]
2. O. M. Faltinsen, Hydrodynamics of high-speed marine vehicles, vol. 9780521845. Cambridge university press, 2006. doi: 10.1017/CBO9780511546068. [DOI:10.1017/CBO9780511546068]
3. D. Savitsky, M. F. DeLorme, and R. Datla, "Inclusion of whisker spray drag in performance prediction method for high-speed planing hulls," Mar. Technol. SNAME News, vol. 44, no. 1, pp. 35-56, 2007, doi: 10.5957/mt1.2007.44.1.35. [DOI:10.5957/mt1.2007.44.1.35]
4. L. Larsson and E. Baba, "Ship resistance and flow computations," Adv. Fluid Mech., vol. 5, pp. 1-75, 1996.
5. D. Savitsky and M. Morabito, "Origin and characteristics of the spray patterns generated by planing hulls," Trans. - Soc. Nav. Archit. Mar. Eng., vol. 120, no. 02, pp. 306-326, 2013, doi: 10.5957/jspd.2011.27.2.63. [DOI:10.5957/jspd.2011.27.2.63]
6. E. P. Clement, "Reduction of Planing Boat Resistance by Deflection of the Whisker Spray," 1964. [Online]. Available: https://dome.mit.edu/handle/1721.3/49020?show=full
7. L. Olin, M. Altimira, J. Danielsson, and A. Rosén, "Numerical modelling of spray sheet deflection on planing hulls," Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 231, no. 4, pp. 811-817, 2017, doi: 10.1177/1475090216682838. [DOI:10.1177/1475090216682838]
8. J. Seo et al., "Model tests on resistance and seakeeping performance of wave-piercing high-speed vessel with spray rails," Int. J. Nav. Archit. Ocean Eng., vol. 8, no. 5, pp. 442-455, 2016, doi: 10.1016/j.ijnaoe.2016.05.010. [DOI:10.1016/j.ijnaoe.2016.05.010]
9. M. Lakatoš, K. Tabri, A. Dashtimanesh, and H. Andreasson, "Numerical Modelling of a Planing Craft with a V-Shaped Spray Interceptor Arrangement in Calm Water," in Progress in Marine Science and Technology, IOS Press, 2020, pp. 33-42. doi: 10.3233/PMST200024. [DOI:10.3233/PMST200024]
10. B. Molchanov, S. Lundmark, M. Fürth, and M. Green, "Experimental validation of spray deflectors for high speed craft," Ocean Eng., vol. 191, no. October, p. 106482, 2019, doi: 10.1016/j.oceaneng.2019.106482. [DOI:10.1016/j.oceaneng.2019.106482]
11. L. Castaldi, F. Osmak, M. Green, M. Fürth, and J. Bonoli, "The effect of spray deflection on the performance of high speed craft in calm water," Ocean Eng., vol. 229, p. 108892, 2021, doi: 10.1016/j.oceaneng.2021.108892. [DOI:10.1016/j.oceaneng.2021.108892]
12. Samuel, A. Trimulyono, P. Manik, and D. Chrismianto, "A numerical study of spray strips analysis on fridsma hull form," Fluids, vol. 6, no. 11, p. 420, 2021, doi: 10.3390/fluids6110420. [DOI:10.3390/fluids6110420]
13. M. Lakatoš, T. Sahk, H. Andreasson, and K. Tabri, "The effect of spray rails, chine strips and V-shaped spray interceptors on the performance of low planing high-speed craft in calm water," Appl. Ocean Res., vol. 122, p. 103131, 2022, doi: 10.1016/j.apor.2022.103131. [DOI:10.1016/j.apor.2022.103131]
14. "https://ittc.info/members/member-organisations/national-iranian-marine-laboratory-nimala/."
15. "Propulsion Committee. Final report and recommendations to the 23rd ITTC, Proceeding of Twenty-third ITTC,. (2002)."
16. N. Celik, G. Pusat, and E. Turgut, "Application of Taguchi method and grey relational analysis on a turbulated heat exchanger," Int. J. Therm. Sci., vol. 124, pp. 85-97, 2018, doi: 10.1016/j.ijthermalsci.2017.10.007. [DOI:10.1016/j.ijthermalsci.2017.10.007]
17. A. F. Kaya and A. Acır, "Enhancing the aerodynamic performance of a Savonius wind turbine using Taguchi optimization method," Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 2, pp. 5610-5626, 2022, doi: 10.1080/15567036.2022.2088898. [DOI:10.1080/15567036.2022.2088898]
18. F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA J., vol. 32, no. 8, pp. 1598-1605, 1994, doi: 10.2514/3.12149. [DOI:10.2514/3.12149]
19. F. Stern, J. Yang, Z. Wang, H. Sadat-Hosseini, and M. Mousaviraad, "Computational ship hydrodynamics: Nowadays and way forward," Int. Shipbuild. Prog., vol. 60, no. 1-4, pp. 3-105, 2013, doi: 10.3233/ISP-130090.
20. X. Bi, J. Zhuang, and Y. Su, "Seakeeping analysis of planing craft under large wave height," Water (Switzerland), vol. 12, no. 4, p. 1020, 2020, doi: 10.3390/W12041020. [DOI:10.3390/w12041020]
21. ITTC, "Practical guidelines for ship CFD applications (7.5-03-02-03). p. 1-20," 2014.
22. "ITTC, Practical guidelines for ship CFD applications, in (7.5-03-02-03). Revision-01. 2011".
23. J. Suneela, P. Krishnankutty, and V. A. Subramanian, "Hydrodynamic performance of planing craft with interceptor-flap hybrid combination," J. Ocean Eng. Mar. Energy, vol. 7, no. 4, pp. 421-438, 2021, doi: 10.1007/s40722-021-00211-0. [DOI:10.1007/s40722-021-00211-0]
24. P. M. Carrica, R. V. Wilson, R. W. Noack, and F. Stern, "Ship motions using single-phase level set with dynamic overset grids," Comput. Fluids, vol. 36, no. 9, pp. 1415-1433, 2007, doi: 10.1016/j.compfluid.2007.01.007. [DOI:10.1016/j.compfluid.2007.01.007]
25. A. De Marco, S. Mancini, S. Miranda, R. Scognamiglio, and L. Vitiello, "Experimental and numerical hydrodynamic analysis of a stepped planing hull," Appl. Ocean Res., vol. 64, pp. 135-154, 2017, doi: 10.1016/j.apor.2017.02.004. [DOI:10.1016/j.apor.2017.02.004]
26. "Begovic E, Bertorello C, Mancini S. Hydrodynamic performances of small size swath craft. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike. 2015;66(4):1-22.".
27. F. De Luca, S. Mancini, S. Miranda, and C. Pensa, "An extended verification and validation study of CFD simulations for planing hulls," J. Sh. Res., vol. 60, no. 2, pp. 101-118, 2016, doi: 10.5957/JOSR.60.2.160010. [DOI:10.5957/JOSR.60.2.160010]
28. "ITTC. Practical guidelines for ship CFD applications (75-03-02-03)p 1-20Revision-01. 2014.".
29. I. B. Celik, U. Ghia, P. J. Roache, C. J. Freitas, H. Coleman, and P. E. Raad, "Procedure for estimation and reporting of uncertainty due to discretization in CFD applications," J. Fluids Eng. Trans. ASME, vol. 130, no. 7, pp. 0780011-0780014, 2008, doi: 10.1115/1.2960953. [DOI:10.1115/1.2960953]
30. L. F. Richardson, "IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam," Philos. Trans. R. Soc. London. Ser. A, Contain. Pap. a Math. or Phys. Character, vol. 210, no. 459-470, pp. 307-357, 1911, doi: 10.1098/rsta.1911.0009. [DOI:10.1098/rsta.1911.0009]
31. D. Diakoulaki, G. Mavrotas, and L. Papayannakis, "Determining objective weights in multiple criteria problems: The critic method," Comput. Oper. Res., vol. 22, no. 7, pp. 763-770, 1995, doi: 10.1016/0305-0548(94)00059-H. [DOI:10.1016/0305-0548(94)00059-H]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.