Write your message
Volume 19, Issue 40 (11-2023)                   Marine Engineering 2023, 19(40): 63-74 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parsaei A, Forouzani H, Binesh A. Experimental and Numerical analysis of an unmanned twin-hull surface vessel (USV) hydrodynamic resistance and behavior. Marine Engineering 2023; 19 (40) :63-74
URL: http://marine-eng.ir/article-1-1063-en.html
1- Malek ashtar university of technology
Abstract:   (1486 Views)
In this study, the total resistance and effects of different parameters on the hydrodynamic behavior of a twin-hull unmanned surface vessel have been investigated using the numerical method (CFD) using STAR-CCM+ and the experimental method (towing tank test) in Kowsar towing tank (KTT). Hull has been tested in two tonnages and at four different speeds. The comparison of the results of both methods shows an eligible match between the results of experimental and numerical analysis. Finally, it was found that vessel weight increasing to its maximum value at the operating speed will only increase the total resistance by 17%. Also, during the experiments, it was found that despite the vessel's design for low operating speeds, it is possible to achieve planning speeds or higher. Still, due to a lack of hydrodynamic lift generation at high speeds, hydrodynamic resistance will increase significantly. An increase of 4 kg in hull mass will increase the pitch angle up to 9%, the maximum pressure on the body up to 12%, and the wave height near the body up to 9%.
Full-Text [PDF 1895 kb]   (490 Downloads)    
Type of Study: Research Paper | Subject: Ship Hydrodynamic
Received: 2023/09/25 | Accepted: 2023/11/13

References
1. T. Vaneck, J. Manley, C. Rodriguez, and M. Schmidt, "Automated Bathymetry using an Autonomous Surface Craft,"NAVIGATION, Journal of the Institute of Navigation, Vol. 43 No 4, Winter 1996-1997. DOI:10.1109/MetroSea55331.2022.9950994 [DOI:10.1109/MetroSea55331.2022.9950994]
2. J. E. Manley, "Unmanned surface vehicles, 15 years of development," OCEANS 2008, Quebec City, QC, Canada, 2008, pp. 1-4, DOI:10.1109/OCEANS.2008.5152052 [DOI:10.1109/OCEANS.2008.5152052]
3. J. Manley, A. Marsh, W. Cornforth, and C. Wiseman, "Evolution of the Autonomous Surface Craft AutoCat" Proceedings of Oceans 2000, MTS/IEEE Providence, RI, October, 2000 , DOI:10.1109/OCEANS.2000.881292 [DOI:10.1109/OCEANS.2000.881292]
4. Majohr, J., & Buch, T. (2006). Modelling, simulation and control of an autonomous surface marine vehicle for surveying applications measuring dolphin MESSIN.IEE Control Engineering Series, 69, 329-352, DOI:10.1049/PBCE069E_ch16 [DOI:10.1049/PBCE069E_ch16]
5. Motwani, A. (2012). A survey of uninhabited surface vehicles. MIDAS technical report. MIDAS.SMSE.2012.TR.001. MIDAS.
6. Mindef , Factsheet -Unmanned Surface Vessels (USV), https://www.nas.gov.sg/archivesonline/data/pdfdoc/MINDEF_20050517001/MINDEF_20050 517003.pdf
7. Matos, A., Silva, E., Almeida, J., Martins, A., Ferreira, H., Ferreira, B.,Lobo, V. (2017). Unmanned Maritime Systems for Search and Rescue. Search and Rescue Robotics - From Theory to Practice. DOI:10.5772/intechopen.68449 [DOI:10.5772/intechopen.68449]
8. J. Grenestedt, J. Keller, S. Larson, J. Patterson, J. Spletzer, and T. Trephan, "Lorca: A high performance usv with applications to surveillance and monitoring," in 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE, 2015, pp. 1-6. DOI:10.1109/SSRR.2015.7443020 [DOI:10.1109/SSRR.2015.7443020]
9. C. Specht, E. Świtalski, and M. Specht, "Application of an autonomous/unmanned survey vessel (asv/usv) in bathymetric measurements," Polish Maritime Research, vol. 24, no. 3, pp. 36-44, 2017. DOI:10.1515/pomr-2017-0088 [DOI:10.1515/pomr-2017-0088]
10. K. T. Suhari, K. S. Apryandika, and M. Rahmawati, "The small hydrography marine boundary boat (shumoo) for mapping bathymetry of shallow water area," in Proceedings of The 1st Geomatics International Conference (GEOICON) 2016 "Utilization of Satellite Technology for Natural Resources Exploration, 2016. DOI:10.13140/RG.2.2.21326.46408
11. K. Suhari, H. Karim, P. H. Gunawan, and H. Purwanto, "Small rov marine boat for bathymetry surveys of shallow waters-potential implementation in Malaysia," International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. 42, 2017 DOI:10.5194/isprs-archives-XLII-4-W5-201-2017 [DOI:10.5194/isprs-archives-XLII-4-W5-201-2017]
12. Kebkal, K., et al. "Sonobot-Autonomous unmanned surface vehicle for hydrographic surveys with hydroacoustic communication and positioning for underwater acoustic surveillance and monitoring." Proceedings of the 2nd International Conference and Exhibition on Underwater Acoustics, Rhodes, Greece. 2014.
13. alpha-sigma , Sonobot iso-Anschit , https://alpha-sigma.eu/portfolio/sonobot/ , 2015 ,Europe
14. Searobotics,"Hycat",https://www.searobotics.com/images/products/asvs/sr-surveyor/SRHycat-SpecSheet. pdf, 2019.
15. OCEANALPHA,"Esm-30," https://www.oceanalpha.com/product-item/esm30/, 2019.
16. Clearpathrobotics,"Heron," https://www.clearpathrobotics.com/heron-unmannedsurface-vessel/, 2019
17. D. F. Carlson, A. Fürsterling, L. Vesterled, M. Skovby, S. S. Pedersen, C. Melvad, and S.Rysgaard, "An affordable and portable autonomous surface vehicle with obstacle avoidance for coastal ocean monitoring," Hardwarex, p. e00059, 201DOI: 10.1016/j.ohx.2019.e00059 [DOI:10.1016/j.ohx.2019.e00059]
18. M. Insel, A.F. Molland," An investigation into the resistance components of high speed displacement catamarans." R. Inst. Nav.Archit. 134, 1-20 (1992)
19. A.F. Molland, J.F. Wellicome, P.R. Couser, "Resistance experiments on a systematic series of high speed displacementcatamaran forms: Variation of length-displacement ratio and breadth-draught ratio." Ship Science Report No. 71. University of Southampton, UK. (1994).
20. G. Zaraphonitis, D. Spanos, A. Papanikolaou, Numerical and Experimental Study on the Wave Resistance of Fast Displacement Asymmetric Catamarans, in: InternationalEuroConference on High Performance Marine Vehicles. (2001)
21. Ahmed, T.M., Abdelrahman, A.M., Hassan, A.M.A. et al. CFD optimization of a displacement catamaran's configuration for minimized calm water resistance. Mar Syst Ocean Technol (2023) DOI:10.1007/s40868-022-00123-0 [DOI:10.1007/s40868-022-00123-0]
22. Brizzolara, S., Curtin, T., Bovio, M. et al. Concept design and hydrodynamic optimization of an innovative SWATH USV by CFD methods. Ocean Dynamics 62, 227-(2102) 732. DOI:10.1007/s10236-011-0471-y [DOI:10.1007/s10236-011-0471-y]
23. HPM , EvoLogics Sonobot 5 Digest, Unmanned System Technology,86-91, May/April 2021
24. Larsson, L. and Baba, E., "Ship resistance and flow computations", Advances in marine Hydrodynamics, M. Ohkusu (ed.), Comp. Mech. Publ., pp. 1-75, 1996
25. Resistance Committee, "Testing and Data Analysis Resistance Test", 25th ITTC, ITTC Recommended Procedures and Guidelines, 2008.
26. Resistance Committee, "Practical Guidelines for Ship CFD Application", ITTC,ITTC Recommended Procedures and Guidelines, 7.5-03-02-04,2014
27. Anthony F. Molland, Ship Resistance and Propulsion, Cambridge University Press, 2017DOI: 10.1017/CBO9780511974113 [DOI:10.1017/CBO9780511974113] [PMID]
28. Resistance Committee, "Testing and Data Analysis Resistance Test", ITTC,ITTC Recommended Procedures and Guidelines, 7.5-02-02-01,2011
29. Resistance Committee, "General Guidline for Uncertainty Analysis in Resistance Tests", ITTC,ITTC Recommended Procedures and Guidelines, 7.5-02-02-02,2014
30. Resistance Committee, "Practical Guidelines for Ship CFD Application", ITTC,ITTC Recommended Procedures and Guidelines, 7.5-03-02-03,2011

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.