Write your message

XML Persian Abstract Print


Imam Hossein University
Abstract:   (63 Views)
One of the main sources of noise generation from marine vehicles is propellers. The noise generated by propellers can lead to identify by detection systems and have negative effects on marine ecosystems. Researchers have investigated various methods to reduce the noise of marine propellers. However, what is important in practice is the simultaneous reduction of noise with an increase in propeller efficiency, which has received less attention. In this paper, while investigating various geometric parameters in order to achieve an optimal noise-reduced propeller, the increase in propeller efficiency is also addressed. Numerical simulations have been conducted using computational fluid dynamics (CFD) based on the finite volume method and the STAR-CCM+ software. To validate the hydroacoustic and hydrodynamic simulations, a conventional propeller with available data was utilized. The results of this study indicate that the high-skew propeller, after the optimization process, under equal operating conditions, achieved a 1.95% increase in efficiency and a 5.3 dB reduction in noise at the first blade passing frequency compared to the conventional propeller
Full-Text [PDF 1016 kb]   (25 Downloads)    
Type of Study: Research Paper | Subject: Ship Hydrodynamic
Received: 2024/12/21 | Accepted: 2025/06/17

References
1. D. R. Blidberg, J. C. Jalbert, and M. Ageev, "Solar autonomous underwater vehicle system," in Oceans Conference Record (IEEE), 1997, vol. 2, pp. 833-840. doi: 10.1109/oceans.1997.624103. [DOI:10.1109/OCEANS.1997.624103]
2. "John carlton, Marine Propellers and Propulsion. Cambridge: Elsevier, 2019.". [DOI:10.1016/B978-0-08-100366-4.00012-2]
3. M. Renilson, R. Leaper, and O. Boisseau, "Hydro-acoustic noise from merchant ships-impacts and practical mitigation techniques," in Proceedings of the third international symposium on marine propulsors, smp, 2013, vol. 13, pp. 201-208.
4. E. Korkut and M. Atlar, "An experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers," Ocean Eng., vol. 41, pp. 1-12, 2012. [DOI:10.1016/j.oceaneng.2011.12.012]
5. M. Atlar, E. J. Glover, M. Candries, R. J. Mutton, and C. D. Anderson, "The effect of a foul release coating on propeller performance," in International conference on Marine Science and Technology for Environmental Sustainability (ENSUS 2002), 2002.
6. M. R. Bagheri, H. Mehdigholi, M. S. Seif, and O. Yaakob, "An experimental and numerical prediction of marine propeller noise under cavitating and non-cavitating conditions," Brodogradnja, vol. 66, no. 2, pp. 29-45, 2015.
7. H. Seol, S. Pyo, J.-C. Suh, and S. Lee, "Numerical study of non-cavitating underwater propeller noise," Noise Vib. Worldw., vol. 35, no. 6, pp. 11-26, 2004. [DOI:10.1260/0957456041648489]
8. R. M. C. Pty, Reducing underwater noise pollution from large commercial vessels. International Fund for Animal Welfare, 2009.
9. G. Gennaro and J. Gonzalez-Adalid, "Improving the propulsion efficiency by means of Contracted and Loaded Tip (CLT) propellers," 2012.
10. P. Andersen, J. Friesch, J. J. Kappel, L. Lundegaard, and G. Patience, "Development of a marine propeller with nonplanar lifting surfaces," Mar. Technol. SNAME news, vol. 42, no. 03, pp. 144-158, 2005. [DOI:10.5957/mt1.2005.42.3.144]
11. Elhami, M.R., Najafi, M.R. & Tashakori Bafghi, M. Vibration analysis and numerical simulation of fluid-structure interaction phenomenon on a turbine blade. J Braz. Soc. Mech. Sci. Eng. 43, 245 (2021). [DOI:10.1007/s40430-021-02933-6]
12. H. R. Hansen, T. Dinham-Peren, and T. Nojiri, "Model and full scale evaluation of a 'propeller boss cap fins' device fitted to an Aframax tanker," in Second International Symposium on Marine Propulsors, 2011.
13. H. CAI, C. MA, K. CHEN, Z. QIAN, and C. YANG, "An Integrative Design Method of Propeller and PBCF (Propeller Boss Cap Fins)," in Proceedings of the Third International Symposium on Marine Propulsors, Smp2013, Launceston, Tasmania, Australia, 2013.
14. F. Chekab, M. Amin, M. Ghadimi, A. Zamanian, A. Norouzi, and H. Hashem, "Investigating the effects of increasing blade number and using a duct on reducing non-cavitation noise of submerged propellers," Journal of the Iranian Society of Acoustical Engineering, vol. 2, no. 1, pp. 16-23, 2014(in persian).
15. S. Mirzazadeh, "Design and construction of an optimized geometric section to increase the efficiency of propulsion systems," M.S. thesis, Sharif Univ. Technol., Tehran, Iran, 2013(in persian).
16. "O. A. A. Asimakopoulos and P. Kaklis, 'Effects of propeller geometry on cavitation,' University of Strathclyde, 2016.".
17. D. Bertetta, S. Brizzolara, E. Canepa, S. Gaggero, and M. Viviani, "EFD and CFD characterization of a CLT propeller," Int. J. Rotating Mach., vol. 2012, 2012, doi: 10.1155/2012/348939. [DOI:10.1155/2012/348939]
18. A. Sánchez-Caja, J. González-Adalid, M. Perez-Sobrino, and I. Saisto, "Study of End-Plate Shape Variations for Tip Loaded Propellers Using a RANSE Solver," in 29th Symposium on Naval Hydrodynamics, 2012, no. August.
19. S. Ianniello, R. Muscari, and A. Di Mascio, "Ship underwater noise assessment by the acoustic analogy, part III: Measurements versus numerical predictions on a full-scale ship," J. Mar. Sci. Technol., vol. 19, no. 2, pp. 125-142, 2014, doi: 10.1007/s00773-013-0228-z. [DOI:10.1007/s00773-013-0228-z]
20. S. Gaggero et al., "A Design by Optimization of Tip Loaded Propellers," in Fourth International Symposium on Marine Propulsors smp'15, 2015, no. June.
21. W. Zhu and H. Gao, "A numerical investigation of awinglet-propeller using an LES model," J. Mar. Sci. Eng., vol. 7, no. 10, 2019, doi: 10.3390/jmse7100333. [DOI:10.3390/jmse7100333]
22. Y. Kehr, H. Xu, and J. Kao, "On the development and verification of diffused endplate propeller," in Sixth International Symposium on Marine Propulsors smp'19, 2019, no. May.
23. H. Gao, W. Zhu, Y. Liu, and Y. Yan, "Effect of various winglets on the performance of marine propeller," Appl. Ocean Res., vol. 86, no. January, pp. 246-256, 2019, doi: 10.1016/j.apor.2019.03.006. [DOI:10.1016/j.apor.2019.03.006]
24. M. Gorji, H. Ghassemi, and J. Mohamadi, "Effect of Rake and Skew on the Hydrodynamic Characteristics and Noise Level of the Marine Propeller," Iran. J. Sci. Technol. - Trans. Mech. Eng., vol. 43, no. 1, pp. 75-85, 2019, doi: 10.1007/s40997-017-0108-y. [DOI:10.1007/s40997-017-0108-y]
25. G. Ku, J. Cho, C. Cheong, and H. Seol, "Numerical investigation of tip-vortex cavitation noise of submarine propellers using hybrid computational hydro-acoustic approach," Ocean Eng., vol. 238, no. August, p. 109693, 2021, doi: 10.1016/j.oceaneng.2021.109693. [DOI:10.1016/j.oceaneng.2021.109693]
26. A. Hadipour, K. A. V. Abadi, H. Khanzadi, and H. Motahari, "Hydrodynamic analysis of noise propagation by the high skew marine propeller working in non-uniform inflow," Int. J. Appl. Mech. Eng., vol. 26, no. 1, pp. 104-121, Mar. 2021, doi: 10.2478/ijame-2021-0007. [DOI:10.2478/ijame-2021-0007]
27. K. Yu, D. Park, J. Choi, H. Seol, I. Park, and S. Lee, "Effect of skew on the tonal noise characteristics of a full-scale submarine propeller," Ocean Eng., vol. 276, no. February, p. 114218, 2023, doi: 10.1016/j.oceaneng.2023.114218. [DOI:10.1016/j.oceaneng.2023.114218]
28. Ebrahimi, A., Razaghian, A. H., Seif, M. S., Zahedi, F., & Nouri-Borujerdi, A. (2019). A comprehensive study on noise reduction methods of marine propellers and design procedures. Applied Acoustics, 150, 55-69. [DOI:10.1016/j.apacoust.2018.12.004]
29. Ghasseni, H., & Ghadimi, P. (2011). Numerical analysis of the high skew propeller of an underwater vehicle. Journal of Marine Science and Application, 10, 289-299. [DOI:10.1007/s11804-011-1071-4]
30. Ebrahimi, A., Razaghian, A. H., Tootian, A., & Seif, M. S. (2021). An experimental investigation of hydrodynamic performance, cavitation, and noise of a normal skew B-series marine propeller in the cavitation tunnel. Ocean Engineering, 238, 109739. [DOI:10.1016/j.oceaneng.2021.109739]
31. Razaghian, A. H., Ebrahimi, A., Zahedi, F., Javanmardi, M. R., & Seif, M. S. (2021). Investigating the effect of geometric parameters on hydrodynamic and hydro-acoustic performances of submerged propellers. Applied Ocean Research, 114, 102773. [DOI:10.1016/j.apor.2021.102773]
32. "Lighthill, M. J., (1954), On sound generated aerodynamically. II. Turbulence as a source of sound. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 222(1148), p.1-32.". [DOI:10.1098/rspa.1954.0049]
33. "Rienstra, S. W., & Hirschberg, A. An introduction to acoustics. Report IWDE, pp.92-06.".
34. S. Sezen and O. K. Kinaci, "Incompressible flow assumption in hydroacoustic predictions of marine propellers," Ocean Eng., vol. 186, no. January, p. 106138, 2019, doi: 10.1016/j.oceaneng.2019.106138. [DOI:10.1016/j.oceaneng.2019.106138]
35. ITTC Procedings, "Practical Guidelines for Ship CFD Applications ITTC - Recommended Procedures and Guidelines, section 7.5-03-02-03," in International Towing Tank Conference, 2014.
36. I. B. Celik, U. Ghia, P. J. Roache, C. J. Freitas, H. Coleman, and P. E. Raad, "Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications," J. Fluids Eng., vol. 130, no. 7, pp. 078001-078004, 2008, doi: 10.1115/1.2960953 [DOI:10.1115/1.2960953]
37. M. Renilson, Submarine Hydrodynamics, 2nd ed. Springer International Publishing, 2018. doi: 10.3723/ut.33.137. [DOI:10.3723/ut.33.137]
38. H. Mohamed, M. H. Lee, S. Salleh, B. Sanugi, and M. Sarahintu, "Taguchi Approach for Performance Evaluation of Routing Protocols in Mobile Ad Hoc Networks," J. Stat. Model. Anal., vol. 1, no. 2, pp. 10-18, 2010.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.