پیام خود را بنویسید
دوره 19، شماره 38 - ( 2-1402 )                   جلد 19 شماره 38 صفحات 37-28 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Izadi S, Kohansal A. Numerical simulation of water entry of tunnel cross section with different deadrise angles and tunnel radiuses. Marine Engineering 2023; 19 (38) :28-37
URL: http://marine-eng.ir/article-1-987-fa.html
ایزدی سلمان، کهنسال احمدرضا. شبیه‌سازی عددی ورود به آب مقطع تونل دار در زوایای خیز کف و شعاع تونل متفاوت. مهندسی دریا. 1402; 19 (38) :28-37

URL: http://marine-eng.ir/article-1-987-fa.html


1- دانشجوی کارشناسی ارشد معماری کشتی، دانشگاه خلیج‌فارس
2- دانشگاه خلیج فارس
چکیده:   (821 مشاهده)
این مطالعه به مدل‌سازی عددی ورود به آب متقارن مقاطع تونل دار می‌پردازد. در این مطالعه، ابتدا مسئله ورود به آب مقطع گوه‌ای بدون تونل در چهار زاویه خیز کف متفاوت به‌صورت عددی مدل‌سازی شده است. نتایج به‌دست‌آمده مربوط به توزیع فشار بر روی این مقاطع و ماکزیمم فشار، با نتایج آزمایشگاهی مقایسه شده‌اند. در گام بعد، به شبیه‌سازی عددی مسئله ورود به آب مقطع تونلدار پرداخته شده است. بدین منظور، با اضافه کردن تونل به مقطع گوه‌ای ساده، مقطع تونل‌دار ایجاد شد. درنهایت اثرات تغییر زاویه خیز کف در مقاطع تونل‌دار و همچنین تغییر شعاع مقطع تونل مدل‌سازی شده است. در این مطالعه، از معادلات ناویر-استوکس لزج (N-S) برای شبیه‌سازی جریان آب در اطراف مدل و همچنین از روش حجم سیال (VOF)  برای مدل‌سازی سطح آزاد استفاده شده است. نتایج تغییرات فشار و ماکزیمم فشار در سه ناحیه مختلف مقطع تونل‌دار به دست آمده است. این سه ناحیه شامل قسمت قبل از تونل، در ناحیه تونل و ناحیه بعد از تونل است. نتایج حاصل از این پژوهش، نشان‌دهنده وقوع تغییرات فشاری شدیدی در ناحیه تونل است. همچنین با افزایش شعاع تونل، مشاهده شد که مقدار فشار روی مقطع نیز افزوده می‌شود. از نتایج این مطالعه می‌توان در تحلیل هیدرودینامیکی شناورهای تونل‌دار استفاده کرد.
متن کامل [PDF 1814 kb]   (366 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: هیدرودینامیک کشتی
دریافت: 1401/5/5 | پذیرش: 1402/1/15

فهرست منابع
1. [1] Karman, T.V., (1929), The impact of seaplane floats during landing, in NACA TN321.
2. [2] Wagner, H., (1932), Phenomena associated with impacts and sliding on liquid surfaces, Z. Angew, Math. Mech, vol. 12, no. 4, pp. 193-215. [DOI:10.1002/zamm.19320120402]
3. [3] Zhao, R. and Faltinsen, O., (1993), Water entry of two-dimensional bodies, Journal of Fluid Mechanics, vol. 246, pp. 593-612. [DOI:10.1017/S002211209300028X]
4. [4] Wu, G.X., Sun, H., He, Y.S., (2004), Numerical simulation and experimental study of water entry of a wedge in free fall motion, J. Fluids Struct, 19, 277-289. [DOI:10.1016/j.jfluidstructs.2004.01.001]
5. [5] Bao, C.M., Wu, G.X., Xu, G.D., (2016), Simulation of water entry of a two-dimension finite wedge with flow detachment, J. Fluids Struct. 65, 44-59. [DOI:10.1016/j.jfluidstructs.2016.05.010]
6. [6] Sun, S.Y., Sun, S.L., Wu, G.X., (2015), Oblique water entry of a wedge into waves with gravity effect, J. Fluids Struct, 52, 49-64. [DOI:10.1016/j.jfluidstructs.2014.09.011]
7. [7] Wang, J., Lugni, C., and Faltinsen, O.M., (2015), Experimental and numerical investigation of a freefall wedge vertically entering the water surface, Applied Ocean Research, vol. 51, p. 181-203. [DOI:10.1016/j.apor.2015.04.003]
8. [8] Korobkin A. A. and Pukhnachov V. V., Initial stage of water impact. Annu. Rev. Fluid Mech., 20:159-185, 1988. [DOI:10.1146/annurev.fl.20.010188.001111]
9. [9] Korobkin A. A., (1996), Water impact problems in ship hydrodynamics. In M. Ohkusu, editor, Advances in Marine Hydrodynamics, volume 5, Computational Mechanics Publications.
10. [10] Korobkin A. A., (2001), Water entry of a perforated wedge, In J. Hiroshima, editor, Proceedings of the 16th Int. Workshop on Water Waves and Floating Bodies.
11. [11] Korobkin A. A., (2004), Analytical models of water impact. Eur. J. Appl. Math., 15:821-838. [DOI:10.1017/S0956792504005765]
12. [12] Khabakhpasheva, T.I., Korobkin, A.A., (2013), Elastic wedge impact onto a liquid surface: Wagner's solution and approximate models, J. Fluids Struct, 36, 32-49. [DOI:10.1016/j.jfluidstructs.2012.08.004]
13. [13] Shams, A., Porfiri, M., (2015), Treatment of hydroelastic impact of flexible wedges, J. Fluids Struct, 57, 229-246. [DOI:10.1016/j.jfluidstructs.2015.06.017]
14. [14] Bereznitski A., (2001), Slamming: the role of hydroelasticity, International Shipbuilding Progress, 48(4):333-351.
15. [15] Stenius I., Rosen A., and Kuttenkeuler J., (2006), Explicit FE-modelling of fluid-structure interaction in hull-water impacts, International Shipbuilding Progress, 53(2):103-121.
16. [16] Wang S., Luo H. B., and Soares C. G., (2012), Explicit FE simulation of slamming load on rigid wedge with various deadrise angles during water entry, In Maritime Engineering and Technology, pages 399-406, Taylor&Francis, UK.
17. [17] Calderer A., Kans S., and Sotiropoulos F., (2014), Level set immersed boundary method for coupled simulation or air/water interaction with complex floating structures, J. Comp. Phys., 277:201-227. [DOI:10.1016/j.jcp.2014.08.010]
18. [18] Tan, B. C. W., Vlaskamp, J. H. A., Denissenko, P. & Thomas, P. J., (2016), Cavity formation in the wake of falling spheres submerging into a stratified two-layer system of immiscible liquids, Journal of Fluid Mechanics 790. [DOI:10.1017/jfm.2016.10]
19. [19] Zhao, S., Wei, C. & Cong, W., (2016), Numerical investigation of water entry of half hydrophilic and half hydrophobic spheres, Mathematical Problems in Engineering, 1, 15. [DOI:10.1155/2016/5265818]
20. [20] Tan, B. C. W. & Thomas, P. J., (2018), Influence of an upper layer liquid on the phenomena and cavity formation associated with the entry of solid spheres into a stratified two-layer system of immiscible liquids, Physics of Fluids 30. [DOI:10.1063/1.5027814]
21. [21] Li, D., Zhang, J., Zhang, M., Huang, B., Ma, X. & Wang, G., (2019), Experimental study on water entry of spheres with different surface wettability, Ocean Engineering 187. [DOI:10.1016/j.oceaneng.2019.106123]
22. [22] Piro, D. J., Maki, K. J., (2013), Hydroelastic analysis of bodies that enter and exit water, Journal of Fluids and Structures 37, 134-150. [DOI:10.1016/j.jfluidstructs.2012.09.006]
23. [23] Semenov, Y. A. , Yoon, B. S., (2009), Onset of flow separation for the oblique water impact of a wedge, Physics of Fluids 21, 112103. [DOI:10.1063/1.3261805]
24. [24] Reinhard, M., Korobkin, A. A., Cooker, M. J., (2013), Water entry of a flat elastic plate at high horizontal speed, Journal of Fluid Mechanics 724, 123-153. [DOI:10.1017/jfm.2013.155]
25. [25] Battistin, D., Iafrati, A., (2003), Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies, Journal of Fluids and Structures, 17, 643-664. [DOI:10.1016/S0889-9746(03)00010-0]
26. [26] Xu, G.D., Duan, W.Y., Wu, G.X., (2008), Numerical simulation of oblique water entry of an asymmetrical wedge, Ocean Eng. 35 (16), 1597-1603. [DOI:10.1016/j.oceaneng.2008.08.002]
27. [27] Barjasteh, M., Zeraatgar, H., Javaherian, M.J., (2016), An experimental study on water entry of asymmetric wedges, Appl. Ocean Res. 58, 292-304. [DOI:10.1016/j.apor.2016.04.013]
28. [28] Wu, X., (2006), Numerical simulation of water entry of twin wedges, J. Fluid Struct, 22(1), 99-108. [DOI:10.1016/j.jfluidstructs.2005.08.013]
29. [29] Hu, X., Zhao, X., Cheng, D., Zhang, D., (2017), Numerical simulation of water entry of
30. twin wedges using a CIP-based method, The 27th International Ocean and Polar Engineering Conference, California, USA, San Francisco.
31. [30] Yun, X. Lyu, Wei, Z., (2020a), Experimental study on oblique water entry of two tandem spheres with collision effect, J. Vis. 23 (1), 49-59. [DOI:10.1007/s12650-019-00602-4]
32. [31] Yun, X. Lyu, Wei, Z., (2020b), Experimental study on vertical water entry of two tandem spheres, Ocean Eng., 201, 107-143. [DOI:10.1016/j.oceaneng.2020.107143]
33. [32] Panciroli, R., Shams, A. and Porfiri, M., (2015), Experiments on the water entry of curved wedges, High speed imaging and particle image velocimetry, Ocean Engineering, vol. 94, p. 213-222. [DOI:10.1016/j.oceaneng.2014.12.004]
34. [33] Farsi, M. and Ghadimi, P., (2015), Simulation of 2D symmetry and asymmetry wedge water entry by smoothed particle hydrodynamics method, The Brazilian Society of Mechanical Sciences and Engineering, vol. 37, p. 821-835. [DOI:10.1007/s40430-014-0212-5]
35. [34] Ghadimi, P., Tavakoli, S. and Dashtimanesh, A., (2016), Coupled heave and pitch motions of planing hulls at non-zero heel angle, Ocean Research, vol. 59, pp. 286-303. [DOI:10.1016/j.apor.2016.05.009]
36. [35] Niazmanbilandi, R., (2018), Development of a Mathematical Model for Motion Prediction of Stepped Planing Hulls in Calm Water and Wave, Persian gulf university, Bushehr.
37. [36] Chen, C., W., Lu, Y., F., (2019), Computational Fluid Dynamics Study of Water Entry Impact Forces of an Airborne-Launched, Axisymmetric, Disk-Type Autonomous Underwater Hovering Vehicle, 11, Symmetry. [DOI:10.3390/sym11091100]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.