1. Gude, G. ed., (2018). Sustainable desalination handbook: plant selection, design and implementation. Butterworth-Heinemann.
2. Missimer, T.M., Jones, B. and Maliva, R.G. eds., (2015). Intakes and Outfalls for Seawater Reverse-Osmosis Desalination Facilities: Innovations and Environmental Impacts. Springer. [
DOI:10.1007/978-3-319-13203-7]
3. Baudish PA, Lavery HA, Burch RN, Pain DD, Franklin DG, and Banks PJ, (2011), Design considerations and interactions for tunneled seawater intake and brine outfall systems, IDA World Congress, Perth, Australia, September 4-9, 2011; 2011. REF: IDAWC/ PER11-242.
4. WRA, (2011), Desalination plant intakes-impingement and entrainment impacts and solutions, White Paper Alexandria, VA: WateReuse Association (WRA); 2011.
5. Bagheri, M., Nassiri, M., and Ashrafi, M, (2004), Study of Increasing the discharge capacity in Pars intake using physical model. INTERNATIONAL CONFERENCE ON COASTS, PORTS AND MARINE STRUCTURES (ICOPMAS) PORTS & MARITIME ORGANIZATION.
6. Christensen, E., Eskesen, M., Buhrkall, J., & Jensen, B., (2014), Analyses of hydraulic performance of velocity caps, In 3rd International Association for Hydro-Enviroment Engineering and Research Europe Congress. Porto, Portugal. [
DOI:10.1115/OMAE2015-41907]
7. USEPA (2014), National Pollutant Discharge Elimination System-Final Regulations To Establish Requirements for Cooling Water Intake Structures at Existing Facilities and Amend Requirements at Phase I Facilities, Federal Register, Rules and Regulations, 79, 158.
8. Voutchkov, N, (2018), Design and Construction of Open Intakes, Sustainable Desalination Handbook (pp. 201-225), Butterworth-Heinemann. [
DOI:10.1016/B978-0-12-809240-8.00005-8]
9. Shafaei Bejestan, M. (2010). The principles and application of Physical-Hydrological models, Shahid Chamran University, Iran.
10. Roberts, P.J.W. and Abessi, O., (2014). Optimization of desalination diffusers using three-dimensional laser-induced fluorescence, Final report. United States Bureau of Reclamation, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta.
11. Hirt C.W., and B.D. Nichols, (2002), Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comp.Phys. Vol. 39, p. 201-225. [
DOI:10.1016/0021-9991(81)90145-5]
12. Rudman, M. (1997), Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Meth. Fluids, Vol. 24, p. 671-691.
https://doi.org/10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9 [
DOI:10.1002/(SICI)1097-0363(19970415)24:73.0.CO;2-9]
13. Hajitabar, Mohamad, Abessi, Ozeair, Hamidi, Mehdi (2020), The effects of discharge varations in deep intakes, 2nd International Conference on Oceanography for West Asia, Iranian National Institute for Oceanography and Atmospheric Science, 16-17 September 2020.
14. Abessi, O., (2018). Brine Disposal and Management-Planning, Design, and Implementation. In Sustainable Desalination Handbook (pp. 259-303). Butterworth-Heinemann. [
DOI:10.1016/B978-0-12-809240-8.00007-1]
15. Abessi, O., Saeedi, M., Hajizadeh, Z.N., and Kheirkhah, G.H., (2011). Waste field characteristics, ultimate mixing and dilution in surface discharge of dense jets into stagnant water bodies. Water and Wastewater, Vol. 23 (181), p. 2-14.
16. Saeedi, M., Farahani, A.A., Abessi, O. and Bleninger, T., 2012. Laboratory studies defining flow regimes for negatively buoyant surface discharges into crossflow. Environmental fluid mechanics, 12(5), pp.439-449. [
DOI:10.1007/s10652-012-9245-4]
17. Abessi, Ozeair, Philip JW Roberts, and Varun Gandhi. "Rosette diffusers for dense effluents." Journal of Hydraulic Engineering 143, no. 4 (2017): 06016029. [
DOI:10.1061/(ASCE)HY.1943-7900.0001268]