پیام خود را بنویسید
دوره 16، شماره 31 - ( 2-1399 )                   جلد 16 شماره 31 صفحات 109-121 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

fazel S, pariz N. Risk-based and dynamic simulation of the marine operational field with the purpose of safe path planning for vessels. marine-engineering. 2020; 16 (31) :109-121
URL: http://marine-eng.ir/article-1-802-fa.html
فاضل صادق، پریز ناصر. شبیه سازی ریسک پایه و پویای صحنه عملیات دریایی با هدف مسیریابی ایمن شناورهای سطحی. مهندسی دریا. 1399; 16 (31) :109-121

URL: http://marine-eng.ir/article-1-802-fa.html


1- دانشگاه فردوسی مشهد
2- عضو هیئت علمی دانشگاه فردوسی مشهد
چکیده:   (558 مشاهده)

معمولا تضمین ایمنی و امنیت برای شناورها از هر مسئله دیگری مانند سرعت، مصرف انرژی و هزینه مهم‌تر است. در این مقاله نقشه‌ای جدید با عنوان "نقشه ریسک-پایه صحنه عملیات" پیشنهاد شده است که می‌تواند برای نمایش برآیند ریسک همه تهدیدات در هر نقطه از میدان عملیات مورد استفاده قرار گیرد. این نقشه می‌تواند جهت تضمین ایمنی و تعیین مسیر ایمن بهینه شناورهای سطحی و هر سیستم دیگری که در یک فضای عملیاتی دوبعدی کار می‌کند به‌ کار رود.
همچنین در این مقاله روش و معیاری جدید برای ارزیابی برآیند ریسک چند تهدید معرفی شده است. روش پیشنهادی برپایه ترکیب همه تهدیدات با یکدیگر و جایگزینی آنها با یک رویداد که "تهدید معادل" نامیده می‌شود، و سپس ارزیابی ریسک تهدید معادل به جای ریسک همه تهدیدات استوار است. مزیت معیار پیشنهادی ارزیابی همزمان برآیند ریسک چند تهدید بر معیارهای معرفی شده قبلی در این است که از آن می‌توان برای تضمین ایمنی و امنیت حرکت شناورها بهره برد. در انتها تمامی ایده‌های مطرح شده درمورد یک کشتی که همزمان در معرض چند تهدید قرار دارد پیاده‌سازی  شده‌اند.

متن کامل [PDF 6431 kb]   (153 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: هیدرودینامیک عددی
دریافت: 1398/12/5 | پذیرش: 1399/3/12

فهرست منابع
1. U. DoD, (2012), Mil-std-882e, department of defense standard practice for system safety, US Department of Defense.
2. C. A. Ericson, (2015), Hazard analysis techniques for system safety, Second edition, John Wiley & Sons.
3. B. ISO, (2018), 31000, (2018) Risk management-Principles and guidelines, International Organization for Standardization, Geneva, Switzerland.
4. S. Fazel, (2013), Dependability engineering, Prediction methods, Daneshnegar. (In Persian)
5. S. Fazel, (2010), Analysis and control of failures and hazards from the view of reliability and safety, Sarvenegar. (In Persian)
6. B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, (2013), Multisensor data fusion: A review of the state-of-the-art, Information fusion, vol. 14, pp. 28-44. [DOI:10.1016/j.inffus.2011.08.001]
7. M. Liggins II, D. Hall, and J. Llinas, (2008), Handbook of multisensor data fusion: theory and practice, Second edition ed. CRC press.
8. S. K. Das, (2008), High-level data fusion, Artech House.
9. A. Lehikoinen, M. Hänninen, J. Storgård, E. Luoma, S. Mäntyniemi, and Sakari Kuikka, (2015), A bayesian network for assessing the collision induced risk of an oil accident in the gulf of finland, Environmental science & technology, vol. 49, pp. 5301-5309. [DOI:10.1021/es501777g]
10. J. J. Dabrowski and J. P. De Villiers, (2015), Maritime piracy situation modelling with dynamic Bayesian networks, Information fusion, vol. 23, pp. 116-130. [DOI:10.1016/j.inffus.2014.07.001]
11. X. Ximeng, Y. Rennong, and F. Ying, (2018), Situation assessment for air combat based on novel semi-supervised naive Bayes, Journal of Systems Engineering and Electronics, vol. 29, no. 4, pp. 768-779. [DOI:10.21629/JSEE.2018.04.11]
12. R. M. A. Valdés, V. F. G. Comendador, L. P. Sanz, and A. R. Sanz, (2018), Prediction of aircraft safety incidents using Bayesian inference and hierarchical structures, Safety science, vol. 104, pp. 216-230. [DOI:10.1016/j.ssci.2018.01.008]
13. W. Xing-zhu, (2016), Network information security situation assessment based on bayesian network, International Journal of Security and its Applications, vol. 10, no. 5, pp. 129-38. [DOI:10.14257/ijsia.2016.10.5.12]
14. Z. Kun, K. Weiren, L. Peipei, S. Jiao, L. Yu, and Z. Jie, (2018), Assessment and sequencing of air target threat based on intuitionistic fuzzy entropy and dynamic VIKOR, Journal of Systems Engineering and Electronics, vol. 29, no. 2, pp. 305-310. [DOI:10.21629/JSEE.2018.02.11]
15. F. Jinfu, Z. Qiang, H. Junhua, and L. An, (2019), Dynamic assessment method of air target threat based on improved GIFSS, Journal of Systems Engineering and Electronics, vol. 30, no. 3, pp. 525-534. [DOI:10.21629/JSEE.2019.03.10]
16. J. Chen, G.-h. Yu, and X.-g. Gao, (2012), Cooperative threat assessment of multi-aircrafts based on synthetic fuzzy cognitive map, Journal of Shanghai Jiaotong University (Science), vol. 17, no. 2, pp. 228-232. [DOI:10.1007/s12204-012-1257-1]
17. E. Azimirad and J. Haddadnia, (2015), A new data fusion instrument for threat evaluation using of fuzzy sets theory, International Journal of Computer Science and Information Security, vol. 13, no. 4, p. 19.
18. L. Snidaro, I. Visentini, and K. Bryan, (2015), Fusing uncertain knowledge and evidence for maritime situational awareness via Markov Logic Networks, Information Fusion, vol. 21, pp. 159-172. [DOI:10.1016/j.inffus.2013.03.004]
19. F. Liu, D. Deng, and P. Li, (2017), Dynamic context-aware event recognition based on Markov logic networks, Sensors, vol. 17, no. 3, p. 491. [DOI:10.3390/s17030491]
20. L. Yue, R. Yang, J. Zuo, H. Luo, and Q. Li, (2019), Air target threat assessment based on improved moth flame optimization-gray neural network model, Mathematical Problems in Engineering, vol. 2019. [DOI:10.1155/2019/4203538]
21. G. Wang, L. Guo, and H. Duan, (2013), Wavelet neural network using multiple wavelet functions in target threat assessment, The Scientific World Journal, vol. 2013. [DOI:10.1155/2013/632437]
22. M. K. Allouche, (2005), Real-time use of Kohonen's self-organizing maps for threat stabilization, Information Fusion, vol. 6, no. 2, pp. 153-163. [DOI:10.1016/j.inffus.2004.06.001]
23. Y. Zhou, Y. Tang, and X. Zhao, (2019), A novel uncertainty management approach for air combat situation assessment based on improved belief entropy, Entropy, vol. 21, no. 5, p. 495. [DOI:10.3390/e21050495]
24. A. Benavoli, B. Ristic, A. Farina, M. Oxenham, and L. Chisci, (2009), An application of evidential networks to threat assessment, IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 2, pp. 620-639. [DOI:10.1109/TAES.2009.5089545]
25. Y. Jinyong, L. Keke, and W. Wenjing, (2017), Ship-aircraft joint situation assessment by using fuzzy dynamic Bayesian network, In 2017 IEEE International Conference on Unmanned Systems (ICUS), 2017: IEEE, pp. 220-224. [DOI:10.1109/ICUS.2017.8278344]
26. P. Badida, Y. Balasubramaniam, and J. Jayaprakash, (2019), Risk evaluation of oil and natural gas pipelines due to natural hazards using fuzzy fault tree analysis, Journal of Natural Gas Science and Engineering, vol. 66, pp. 284-292. [DOI:10.1016/j.jngse.2019.04.010]
27. M. Yazdi, F. Nikfar, and M. Nasrabadi, (2017), Failure probability analysis by employing fuzzy fault tree analysis, International Journal of System Assurance Engineering and Management, vol. 8, pp. 1177-1193. [DOI:10.1007/s13198-017-0583-y]
28. B. Li, (2018), Navigation risk assessment scheme based on fuzzy Dempster-Shafer evidence theory, International Journal of Advanced Robotic Systems, vol. 15, no. 5. [DOI:10.1177/1729881418799572]
29. E. Azimirad and J. Haddadnia, (2016), A new model for threat assessment in data fusion based on fuzzy evidence theory, International Journal of Advances in Intelligent Informatics, vol. 2, no. 2, pp. 54-64. [DOI:10.26555/ijain.v2i2.56]
30. H. Lee, B. J. Choi, C. O. Kim, J. S. Kim, and J. E. Kim, (2017), Threat evaluation of enemy air fighters via neural network-based Markov chain modeling, Knowledge-Based Systems, vol. 116, pp. 49-57. [DOI:10.1016/j.knosys.2016.10.032]
31. S. Haiwen and X. Xiaofang, (2019), Threat evaluation method of warships formation air defense based on AR (p)-DITOPSIS, Journal of Systems Engineering and Electronics, vol. 30, no. 2, pp. 297-307. [DOI:10.21629/JSEE.2019.02.09]
32. S. Ma, H. Zhang, and G. Yang, (2017), Target threat level assessment based on cloud model under fuzzy and uncertain conditions in air combat simulation, Aerospace Science and Technology, vol. 67, pp. 49-53. [DOI:10.1016/j.ast.2017.03.033]
33. H. Asgari, S. Haines, and O. Rysavy, (2017), Identification of threats and security risk assessments for recursive Internet architecture, IEEE Systems Journal, vol. 12, no. 3, pp. 2437-2448. [DOI:10.1109/JSYST.2017.2765178]
34. E. Ciapessoni, D. Cirio, G. Kjølle, S. Massucco, A. Pitto, and M. Sforna, (2016), Probabilistic risk-based security assessment of power systems considering incumbent threats and uncertainties, IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2890-2903. [DOI:10.1109/TSG.2016.2519239]
35. Q. Zhang, C. Zhou, Y.-C. Tian, N. Xiong, Y. Qin, and B. Hu, (2017), A fuzzy probability bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems, IEEE Transactions on Industrial Informatics, vol. 14, no. 6, pp. 2497-2506. [DOI:10.1109/TII.2017.2768998]
36. F. Bolderheij, F. G. Absil, and P. van Genderen, (2005), A risk-based object-oriented approach to sensor management, In 7th International Conference on Information Fusion, 2005: IEEE. [DOI:10.1109/ICIF.2005.1591909]
37. R. r. Xi, X. c. Yun, Z. y. Hao, and Y. z. Zhang, (2016), Quantitative threat situation assessment based on alert verification, Security and Communication Networks, vol. 9, no. 13, pp. 2135-2142,.
38. S. Kumar and B. K. Tripathi, (2016), Modelling of threat evaluation for dynamic targets using bayesian network approach, Procedia Technology, vol. 24, pp. 1268-1275. [DOI:10.1016/j.protcy.2016.05.112]
39. S. Kumar, A. M. Dixit, (2012), Threat evaluation modelling for dynamic targets using fuzzy logic approach, International conference on computer science and engineering.
40. M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minarick, and J. Railsback, (2002), Fault tree handbook with aerospace applications, Nasa Office of safety and mission assurance.
41. Z. Zhou and Q. Zhang, (2017), Model event/fault trees with dynamic uncertain causality graph for better probabilistic safety assessment, IEEE Transactions on Reliability, vol. 66, no. 1, pp. 178-188. [DOI:10.1109/TR.2017.2647845]
42. S. Kabir, (2017), An overview of fault tree analysis and its application in model based dependability analysis, Expert Systems with Applications, vol. 77, pp. 114-135. [DOI:10.1016/j.eswa.2017.01.058]
43. S. Fazel, V. Bahadori, (2008), Reliability modelling and evaluation of a solid fuel propulsion system using fault tree analysis method, In the 8th international conference of Iranian aerospace society, Isfahan. (In persian)

ارسال پیام به نویسنده مسئول


Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.