Write your message
Volume 16, Issue 31 (4-2020)                   Marine Engineering 2020, 16(31): 95-107 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Negahdari M, Dalayeli H, Moghadas M H, Ghassemi H, Aliakbari T. Modeling and testing of the point absorber system to convert Sea Wave Energy into electrical energy. Marine Engineering 2020; 16 (31) :95-107
URL: http://marine-eng.ir/article-1-774-en.html
1- Chabahar maritime university
2- Malek ashtar University of Technology
3- Amirkabir University of Technology
4- National Iranian Marine Laboratory
Abstract:   (3254 Views)
Sea waves are an important source of environmental energy which can be converted into energy needed for different purposes. In current study, a floating-point absorber (FPA) wave energy converter is simulated, built, and tested. The system is modeled through a two-body system with two degrees of freedom in the heave direction. Modeling hydrodynamic system has been done in ANSYS-AQWA software. In order to obtain the resonance condition and the maximum power of the system, the values of the hydraulic parameters were determined based on optimal PTO coefficients. The experimental data was used to validate the results presented in this paper.
Full-Text [PDF 2298 kb]   (1435 Downloads)    
Type of Study: Research Paper | Subject: Marine Structures and near shore
Received: 2019/10/31 | Accepted: 2020/05/28

References
1. M. Alves, A. Brito-Melo, and A. J. N. A. Sarmento, Numerical Modelling of the Pendulum Ocean Wave Power Converter using a Panel Method. Twelfth Int. Offshore Polar Eng. Conf. 26-31 May, Kitakyushu, Japan, vol. 12, no. January, pp. 655-661, 2002.
2. E. B. Agamloh, A. K. Wallace, and A. von Jouanne, Application of fluid-structure interaction simulation of an ocean wave energy extraction device. Renew. Energy, vol. 33, no. 4, pp. 748-757, 2008. [DOI:10.1016/j.renene.2007.04.010]
3. G. De Backer, Hydrodynamic Design Optimization of Wave Energy Converters Consisting of Heaving Point Absorbers. Ghent University, 2009.
4. J. D. R. De Backer G., M. Vantorre, R. Banasiak, C. Beels, Numerical Modelling of Wave Energy Absorption By a Floating Point Absorber System. Proc. Seventeenth Int. Offshore Polar Eng. Conf. 1-6 July, Lisbon, Port., 2007.
5. G. De Backer, M. Vantorre, C. Beels, J. De Rouck, and P. Frigaard, Performance of closely spaced point absorbers with constrained floater motion. 8th EWTEC, pp. 806-817, 2009.
6. I. Touzón González, P. Ricci, M. J. Sánchez Lara, G. Pérez Morán, and F. Boscolo Papo, Design, Modelling and Analysis of a Combined Semi-Submersible Floating Wind Turbine and Wave Energy Point-Absorber. Vol. 8 Ocean Renew. Energy, vol. 8, p. V008T09A085, 2013. [DOI:10.1115/OMAE2013-11338]
7. S. Bozzi, A. M. Miquel, A. Antonini, G. Passoni, and R. Archetti, "Modeling of a point absorber for energy conversion in Italian seas" Energies, vol. 6, no. 6, pp. 3033-3051, 2013. [DOI:10.3390/en6063033]
8. J. Goggins and W. Finnegan, Shape optimisation of floating wave energy converters for a specified wave energy spectrum. Renew. Energy, vol. 71, pp. 208-220, 2014. [DOI:10.1016/j.renene.2014.05.022]
9. J. Pastor and Y. Liu, Power Absorption Modeling and Optimization of a Point Absorbing Wave Energy Converter Using Numerical Method. J. Energy Resour. Technol., vol. 136, no. 2, p. 021207, 2014. [DOI:10.1115/1.4027409]
10. H. J. Koh, W. S. Ruy, I. H. Cho, and H. M. Kweon, Multi-objective optimum design of a buoy for the resonant-type wave energy converter. J. Mar. Sci. Technol., vol. 20, no. 1, pp. 53-63, 2015. [DOI:10.1007/s00773-014-0268-z]
11. G. Duclos, A. Babarit, and A. H. Clément, Optimizing the Power Take Off of a Wave Energy Converter With Regard to the Wave Climate. J. Offshore Mech. Arct. Eng., vol. 128, no. 1, p. 56, 2006. [DOI:10.1115/1.2163877]
12. A. Babarit, J. Hals, A. Kurniawan, J. Krokstad, and T. Moan, Power Absorption Measures and Comparisons of Selected Wave. ASME 2011 30th Int. Conf. Ocean. Offshore Arct. Eng. OMAE2011, 2011. [DOI:10.1115/OMAE2011-49360]
13. A. Amiri, R. Panahi, and S. Radfar, Parametric study of two-body floating-point wave absorber. J. Mar. Sci. Appl., vol. 15, no. 1, pp. 41-49, 2016. [DOI:10.1007/s11804-016-1342-1]
14. C. Liang and L. Zuo, On the dynamics and design of a two-body wave energy converter. Renew. Energy, vol. 101, pp. 265-274, 2017. [DOI:10.1016/j.renene.2016.08.059]
15. D. V. Evans and R. Porter, Wave energy extraction by coupled resonant absorber. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 370, no. 1959, pp. 315-344, 2012. [DOI:10.1098/rsta.2011.0165]
16. U. A. Korde, Systems of reactively loaded coupled oscillating bodies in wave energy conversion. Appl. Ocean Res., vol. 25, no. 2, pp. 79-91, 2003. [DOI:10.1016/S0141-1187(03)00044-0]
17. A. F. d. O. Falcão, Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev., vol. 14, no. 3, pp. 899-918, 2010. [DOI:10.1016/j.rser.2009.11.003]
18. J. Van Den Berg, P. Ricci, M. Santos, A. Rico, and J. Lopez, Hydrodynamic performance of heaving wave energy converters in wave climates. 3rd Int. Conf. Ocean Energy, pp. 1-7.
19. J. N. Newman, Wave Effects on Multiple Bodies. Hydrodyn. Sh. Ocean Eng., vol. 2001, no. April, pp. 3-26, 2001.
20. Y.-H. Yu and Y. Li, A RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber. Proc. 21st Int. Offshore Polar Eng. Conf., no. March, pp. 1-10, 2011.
21. Y. Oghabneshin. S. Sedighi, M. Zabetian, A. Mohammad Ebrahim, Experimental and numerical investigation of the effect of pressure on in-cylinder swirl flow using swirl meter". Modares Mechanical Engineering. 2017; 17 (3) :327-335.
22. ITTC, ITTC - Example for Uncertainty Analysis of Resistance Tests in Towing Tanks. 27th Int. Towing Tank Conf., 2014.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.