1. D C Webb, P J Simonetti and C P Jones, (2001), SLOCUM: an underwater glider propelled by environmental energy, IEEE Journal of Oceanic Engineering, Vol.26, p.447-452. [
DOI:10.1109/48.972077]
2. C C Eriksen, Osse T J and Light R D, (2001), Seaglider: A long range autonomous underwater vehicle for oceanographic research, IEEE Journal of Oceanic Engineering, Vol.26, p.424-436. [
DOI:10.1109/48.972073]
3. Wang SX, Wang YH, Zhang DT, He ML, Zhu GW, Ren W, (2006), Design and trial on an underwater glider propelled by thermal engine", Ocean Technology; Vol.25(1), p.1-5 [in Chinese].
4. Kong Q, Ma J, Xia D, (2007), Phase change analysis of an underwater glider propelled by the ocean's thermal energy, J Mar Sci Appl; Vol6:p.37-43. [
DOI:10.1007/s11804-007-7034-0]
5. Zhang H, Wang Y, Zheng-Guang L, (2009), Application and improvement of the interlayer thermal engine powered by ocean thermal energy in an underwater glider, Power and energy engineering conference (APPEEC), Asia-Pacific, p.1-4. [
DOI:10.1109/APPEEC.2009.4918179]
6. Yang H, Ma J, (2010), Experimental study of effects of thermocline on the performance of underwater glider's thermal engine, Power and energy engineering conference (APPEEC), p.1-4. [
DOI:10.1109/APPEEC.2010.5448907]
7. Ma Z, Wang Y, Wang S, Yang Y, (2016), Ocean thermal energy harvesting with phase change material for underwater glider, Appl Energy; Vol.178, p.557-66. [
DOI:10.1016/j.apenergy.2016.06.078]
8. Yang Y, Wang Y, Ma, Z, Wang S, (2016), A thermal engine for underwater glider driven by ocean thermal energy, Appl. Therm. Eng; Vol.99, p.455-464. [
DOI:10.1016/j.applthermaleng.2016.01.038]
9. Bedard R, Jacobson PT, Previsic M, Musial W, Varley R, (2010), An overview of ocean renewable energy technologies, Oceanography; Vol.23, p.22-31. [
DOI:10.5670/oceanog.2010.40]
10. SA Jenkins, G D'Spain, (2016), Autonomous underwater Gliders, Springer Handbook of Ocean Engineering, Springer, p.301-321. [
DOI:10.1007/978-3-319-16649-0_12]
11. I Dinçer, M Rosen, (2010), Thermal energy storage systems and applications, Wiley Publications, 2ed eddition. [
DOI:10.1002/9780470970751]
12. P Zoller, D Walsh, (1995), Standard pressure-volume-temperature data for polymers, Lancaster Pennsylvania USA.
13. China National Standardization Committee on Pressure Vessels, GB/T150-2010, Stationary Pressure Vessels, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Beijing.
14. Ismail KA, Abugderah MM, (2000), Performance of a thermal storage system of the vertical tube type, Energy Conversion & Management; Vol.41, p.1165-90. [
DOI:10.1016/S0196-8904(99)00140-5]
15. Hirata T, Nishida K, (1989), An analysis of heat transfer using equivalent thermal conductivity of liquid phase during melting inside and isothermally heated horizontal cylinder, International Journal of Heat and Mass Transfer; Vol.32(9), p.1663-70. [
DOI:10.1016/0017-9310(89)90049-5]
16. Piia L, Reijo L, Anna-Maria H, (2004), Numerical and experimental investigation of melting and freezing processes in phase change material storage, International Journal of Thermal Sciences; Vol.43, p.277-87. [
DOI:10.1016/j.ijthermalsci.2003.07.001]
17. Kong Q, Ma J, Xia D, (2010), Numerical and experimental study of the phase change process for underwater glider propelled by ocean thermal energy, Renew Energy, p.35:771. [
DOI:10.1016/j.renene.2009.10.017]