پیام خود را بنویسید
دوره 19، شماره 41 - ( 10-1402 )                   جلد 19 شماره 41 صفحات 104-85 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gharechae A. Using Dung Beetle Optimizer (DBO) for optimizing the main dimensions of container ships. Marine Engineering 2023; 19 (41) :85-104
URL: http://marine-eng.ir/article-1-1086-fa.html
قره چائی عطاء الله. استفاده از الگورتیم بهینه‌ساز سوسک سرگین غلتان در تعیین ابعاد کشتی‌ کانتینری. مهندسی دریا. 1402; 19 (41) :85-104

URL: http://marine-eng.ir/article-1-1086-fa.html


عضو هیات عملی دانشگاه دریانوردی و علوم دریایی چابهار
چکیده:   (597 مشاهده)
بهینه‌سازی همواره از مباحث مهم در فرایند طراحی و ساخت مصنوعات دست بشر بوده است. با افزایش توان محاسباتی رایانه‌ها، الگوریتم‌های متعددی در این خصوص توسعه یافته‌اند. در این پژوهش به کمک الگوریتم بهینه‌ساز سوسک سرگین غلتان (DBO) که اخیراً توسعه یافته است، ابعاد اصلی کشتی‌های کانتینری بر حسب ظرفیت بارگیری و سرعت آنها با هدف حداقل مقاومت هیدرودینامیکی به همراه قیدهای متعددی از قبیل محدوده مجاز ابعاد اصلی، تعادل هیدرواستاتیکی و حجم زیرآبی مشخص، بهینه‌سازی شده است. بدین منظور، معادلات حاکم از روش تجربی هولتروپ استخراج شدند. برای صحت‌سنجی، نتایج بدست آمده از الگوریتم DBO با الگوریتم بهینه‌سازی موجود در تابع کتابخانه‌ای Optimization ‌نرم‌افزار میپل مقایسه شدند. نتایج بهینه‌سازی بر روی ابعاد یک فروند شناور کانتینری با ظرفیت 1000 TEU نشان داد که مقاومت هیدرودینامیکی شناور بهینه شده در سرعت 15 knot می‌تواند تا حدود 14% و در سرعت 19 knot تا حدود 21% کمتر از سرعت شناور اولیه گردد. همچنین، در حجم جابجایی ثابت، با افزایش سرعت شناور، طول شناور بهینه شده افزایش، ولی آبخور آن کاهش می‌یابدبطور ویژه هدف این پژوهش معرفی توانمندی الگوریتم DBO و کاربرد آن در حل مسائل بهینه‌سازی در مهندسی دریا است.
متن کامل [PDF 2178 kb]   (175 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: هیدرودینامیک کشتی
دریافت: 1402/9/15 | پذیرش: 1402/11/7

فهرست منابع
1. 1. Qin, Y., Jin, L., Zhang, A. and He, B.,(2020), Rolling bearing fault diagnosis with adaptive harmonic kurtosis and improved bat algorithm, IEEE Transactions on Instrumentation and Measurement 70, p. 1-12. 2. Li, M., et al.,(2023), Fault diagnosis model of rolling bearing based on parameter adaptive AVMD algorithm, Applied Intelligence 53(3), p. 3150-3165. https://doi.org/10.1007/s10489-022-03562-9 3. Karami, H., et al.,(2019), Optimization of energy management and conversion in the water systems based on evolutionary algorithms, Neural Computing and Applications 31, p. 5951-5964.. https://doi.org/10.1007/s00521-018-3412-6 [DOI:10.1109/TIM.2020.3046913]
2. Singh, A. R., Ding, L., Raju, D. K., Raghav, L. P. and Kumar, R. S.,(2022), A swarm intelligence approach for energy management of grid‐connected microgrids with flexible load demand response, International Journal of Energy Research 46(4), p. 4301-4319. [DOI:10.1002/er.7427]
3. Li, J., Lei, Y. and Yang, S.,(2022), Mid-long term load forecasting model based on support vector machine optimized by improved sparrow search algorithm, Energy Reports 8, p. 491-497. [DOI:10.1016/j.egyr.2022.02.188]
4. Wei, D., Wang, J., Li, Z. and Wang, R.,(2021), Wind power curve modeling with hybrid copula and grey wolf optimization, IEEE Transactions on Sustainable Energy 13(1), p. 265-276. [DOI:10.1109/TSTE.2021.3109044]
5. Kennedy, J. and Eberhart, R.,(1995), in Proceedings of ICNN'95-international conference on neural networks. IEEE, vol. 4, p. 1942-1948. [DOI:10.1109/ICNN.1995.488968]
6. Liu, W., et al.,(2019), A novel sigmoid-function-based adaptive weighted particle swarm optimizer, IEEE transactions on cybernetics 51(2), p. 1085-1093. [DOI:10.1109/TCYB.2019.2925015] [PMID]
7. Chi, W., Ding, Z., Wang, J., Chen, G. and Sun, L.,(2021), A generalized Voronoi diagram-based efficient heuristic path planning method for RRTs in mobile robots, IEEE Transactions on Industrial Electronics 69(5), p. 4926-4937. [DOI:10.1109/TIE.2021.3078390]
8. Pehlivanoglu, Y. V. and Pehlivanoglu, P.,(2021), An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems, Applied Soft Computing 112, p. 107796. [DOI:10.1016/j.asoc.2021.107796]
9. Li, M., Xu, G., Fu, B. and Zhao, X.,(2022), Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy, The Journal of Supercomputing, p. 1-31. [DOI:10.1007/s11227-021-04116-5]
10. Mirjalili, S., Mirjalili, S. M. and Lewis, A.,(2014), Grey wolf optimizer, Advances in engineering software 69, p. 46-61. [DOI:10.1016/j.advengsoft.2013.12.007]
11. Mirjalili, S. and Lewis, A.,(2016), The whale optimization algorithm, Advances in engineering software 95, p. 51-67. [DOI:10.1016/j.advengsoft.2016.01.008]
12. Heidari, A. A., et al.,(2019), Harris hawks optimization: Algorithm and applications, Future generation computer systems 97, p. 849-872. [DOI:10.1016/j.future.2019.02.028]
13. Ebadinezhad, S.,(2020), DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem, Engineering Applications of Artificial Intelligence 92, p. 103649. [DOI:10.1016/j.engappai.2020.103649]
14. Yang, K., You, X., Liu, S. and Pan, H.,(2020), A novel ant colony optimization based on game for traveling salesman problem, Applied Intelligence 50, p. 4529-4542. [DOI:10.1007/s10489-020-01799-w]
15. Liu, Y., Chen, S., Guan, B. and Xu, P.,(2019), Layout optimization of large-scale oil-gas gathering system based on combined optimization strategy, Neurocomputing 332, p. 159-183. [DOI:10.1016/j.neucom.2018.12.021]
16. Huang, M., Lin, H., Yunkai, H., Jin, P. and Guo, Y.,(2012), Fuzzy control for flux weakening of hybrid exciting synchronous motor based on particle swarm optimization algorithm, IEEE Transactions on Magnetics 48(11), p. 2989-2992. [DOI:10.1155/2020/1390650]
17. Zeng, N., et al.,(2020), A dynamic neighborhood-based switching particle swarm optimization algorithm, IEEE transactions on cybernetics 52(9), p. 9290-9301. [DOI:10.1109/TCYB.2020.3029748] [PMID]
18. Guo, Q., Gao, L., Chu, X. and Sun, H.,(2022), Parameter identification for static var compensator model using sensitivity analysis and improved whale optimization algorithm, CSEE Journal of Power and Energy Systems 8(2), p. 535-547. [DOI:10.17775/CSEEJPES.2021.03540]
19. Zhong, C. and Li, G.,(2022), Comprehensive learning Harris hawks-equilibrium optimization with terminal replacement mechanism for constrained optimization problems, Expert Systems with Applications 192, p. 116432. 22. Chang, Z., et al.,(2021), 5G private network deployment optimization based on RWSSA in open-pit mine, IEEE Transactions on Industrial Informatics 18(8), p. 5466-5476. https://doi.org/10.1109/TII.2021.3132041 [DOI:10.1016/j.eswa.2021.116432]
20. Xue, J. and Shen, B.,(2023), Dung beetle optimizer: A new meta-heuristic algorithm for global optimization, The Journal of Supercomputing 79(7), p. 7305-7336. [DOI:10.1007/s11227-022-04959-6]
21. Polakis, M., Zachariadis, P., & de Kat, J. O. (2019). The energy efficiency design index (EEDI). Sustainable Shipping: A Cross-Disciplinary View, 93-135. [DOI:10.1007/978-3-030-04330-8_3]
22. Charchalis, A.,(2014), Determination of main dimensions and estimation of propulsion power of a ship, Journal of KONES 21(2), p. 39-44. [DOI:10.5604/12314005.1133863]
23. Jung, Y.-W. and Kim, Y.,(2019), Hull form optimization in the conceptual design stage considering operational efficiency in waves, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 233(3), p. 745-759. [DOI:10.1177/1475090218781115]
24. Jianping, C., Jie, X., You, G. and Li, X.,(2016), Ship Hull Principal Dimensions Optimization Employing Fuzzy Decision-Making Theory, Mathematical Problems in Engineering. [DOI:10.1155/2016/5262160]
25. Seif M. S., Kazemipour A., (2019). Ship Trim Optimization for the Reduction of Fuel Consumption, Marine Engineering, 15(29), p. 63-78, (In Persian). https://marine-eng.ir/article-1-684-fa.html
26. Mehrizi A., Tavakoli Dakhrabadi, M., Vafaee Sefat, A. and Seif, M. S., (2012), Hydrodynamic Optimization of Hull Form of High Speed Planing Craft by Multi Objective Genetic Algorithm in Calm Water, Marine Engineering 7(14), p. 45-58, (In Persian). http://marine-eng.ir/article-1-95-fa.html
27. Ebrahimi, A., (2023), Optimizing the dimensions of a container ship using the multi-objective genetic algorithm method, Journal of Marine Engineering 18(37), p. 70-78, (In Persian). http://marine-eng.ir/article-1-947-en.html
28. Guo, X., et al.,(2023), Speaker Recognition Based on Dung Beetle Optimized CNN, Applied Sciences 13(17), p. 9787. [DOI:10.3390/app13179787]
29. Zilong, W. and Peng, S.,(2023), A multi-strategy dung beetle optimization algorithm for optimizing constrained engineering problems, IEEE Access. [DOI:10.1109/access.2023.3313930]
30. Zhu, X., Ni, C., Chen, G. and Guo, J.,(2023), Optimization of Tungsten Heavy Alloy Cutting Parameters Based on RSM and Reinforcement Dung Beetle Algorithm, Sensors 23(12), p. 5616. [DOI:10.3390/s23125616] [PMID] []
31. Yin, Z. and Zinn-Björkman, L.,(2020), Simulating rolling paths and reorientation behavior of ball-rolling dung beetles, Journal of Theoretical Biology 486, p. 110106. [DOI:10.1016/j.jtbi.2019.110106] [PMID]
32. Notteboom, T. and Cariou, P.,(2009), Fuel surcharge practices of container shipping lines: Is it about cost recovery or revenue making, in Proceedings of the 2009 international association of maritime economists (IAME) conference. IAME Copenhagen, Denmark, p. 24-26. https://www.academia.edu/download/30824512/5-28_presentation.pdf
33. DNV AS, (2016). Container Ship Update 2016. https://issuu.com/dnvgl/docs/dnv_gl_container_ship_update__2016
34. Schneekluth, H. and Bertram, V.,(1998), Ship design for efficiency and economy, Butterworth-Heinemann Oxford, vol. 218. [DOI:10.1016/B978-0-7506-4133-3.X5000-2]
35. Charchalis, A. and Krefft, J.,(2009), Main dimensions selection methodology of the container vessels in the preliminary stage, Journal of KONES 16, p. 71-78. https://bibliotekanauki.pl/articles/241689
36. IMO (2008), International Code on Intact Stability, 2008, International Maritime Organization. https://www.imorules.com/IS2008.html
37. Woo, D., Choe, H. and Im, N.-K., (2021), Analysis of the Relationship between GM and IMO Intact Stability Parameters to Propose Simple Evaluation Methodology, Journal of Marine Science and Engineering 9(7), p. 735. [DOI:10.3390/jmse9070735]
38. ITTC, (2011), ITTC - Recommended Procedures and Guidelines, Resistance Test, ITTC. https://ittc.info/media/1217/75-02-02-01.pdf
39. Birk, L.,(2019), Fundamentals of ship hydrodynamics: Fluid mechanics, ship resistance and propulsion, John Wiley & Sons. [DOI:10.1002/9781119191575]
40. Holtrop, J.,(1988), A statistical resistance prediction method with a speed dependent form factor, Proceedings of the 17th Session BSHC, Varna 1, p. 3.1.
41. Guldhammer, H. and Harvald, S. A.,(1974), SHIP RESISTANCE-Effect of form and principal dimensions.(Revised), Danish Technical Press, Danmark, Danmarks Tekniske Hojskole, kademisk Forlag, St. kannikestrade 8, DK 1169 Copenhagen. http://resolver.tudelft.nl/uuid:1fa6c8b7-17c9-47ec-8a2f-d0afd56f51a0
42. Garrido, J.,(2019). Container-ship size: What dimensions can we expect to see? Pier Next. https://piernext.portdebarcelona.cat/en/mobility/container-ship-size/

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.