Write your message
Volume 18, Issue 35 (5-2022)                   Marine Engineering 2022, 18(35): 27-34 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azizpour J, Hamzehpoor A, Rahnama R. Study of southern Caspian Eddies, case study: Off Kiashahr. Marine Engineering 2022; 18 (35) :27-34
URL: http://marine-eng.ir/article-1-939-en.html
1- Iranian National Institute for Oceanography and Atmospheric Science
Abstract:   (1946 Views)
In this paper the generated eddy in the east part of the Sefidrud river, off the Kiashahr in the Guilan province is studied and discussed and also, effects of this eddy on nutrients are considered. Using a vessel-mounted ADCP and a CTD, water current profiles and, physical oceanographic parameters are measured, respectively. The results show that a small scale anticyclone eddy (warm core) is generated in the area that its core had at least 0.5 ℃ temperature difference from surrounding waters. The main current direction was westward and at location of the eddy, changes in current direction are observable. The minimum quantity of nutrients is observed at the eddy core and this means that at study area downwelling phenomenon is occurred.   
Full-Text [PDF 690 kb]   (575 Downloads)    
Type of Study: Research Paper | Subject: Environmental Study
Received: 2021/11/2 | Accepted: 2022/01/22

References
1. Pascual, A., Faugère, Y., Larnicol, G., & Le Traon, P. Y. (2006). Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophysical Research Letters, 33(2). [DOI:10.1029/2005GL024633]
2. Hunter, J. (1983). Aspects of the dynamics of the residual circulation of the Arabian Gulf. In Coastal oceanography (pp. 31-42). Boston, MA: Springer. [DOI:10.1007/978-1-4615-6648-9_3]
3. Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., & Kumar, V. (2015). A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific data, 2(1), 1-16. [DOI:10.1038/sdata.2015.28]
4. Sur, H. I., Özsoy, E., & Ibrayev, R. (2000). Satellite-derived flow characteristics of the Caspian Sea. In Elsevier Oceanography Series (Vol. 63, pp. 289-297): Elsevier. [DOI:10.1016/S0422-9894(00)80017-3]
5. Gunduz, M. (2014). Caspian Sea surface circulation variability inferred from satellite altimeter and sea surface temperature. Journal of Geophysical Research: Oceans, 119(2), 1420-1430. [DOI:10.1002/2013JC009558]
6. Dyakonov, G. S., & Ibrayev, R. A. (2020). High-resolution data on mesoscale dynamics of the Caspian Sea upper layer, obtained in a numerical reconstruction. Data in brief, 30, 105368. [DOI:10.1016/j.dib.2020.105368]
7. Gunduz, M., & Özsoy, E. (2014). Modelling seasonal circulation and thermohaline structure of the Caspian Sea. Ocean Science, 10(3), 459-471. [DOI:10.5194/os-10-459-2014]
8. Evans, D. G., Frajka‐Williams, E., Naveira Garabato, A. C., Polzin, K. L., & Forryan, A. (2020). Mesoscale eddy dissipation by a "zoo" of submesoscale processes at a western boundary. Journal of Geophysical Research: Oceans, 125(11), e2020JC016246. [DOI:10.1029/2020JC016246]
9. Worst, J. S., Donohue, K. A., & Rossby, T. (2014). A comparison of vessel-mounted acoustic Doppler current profiler and satellite altimeter estimates of sea surface height and transports between New Jersey and Bermuda along the CMV Oleander route. Journal of atmospheric and oceanic technology,1422-1433, (6)31. [DOI:10.1175/JTECH-D-13-00122.1]
10. Khosravi, M., Siadatmousavi, S. M., Vennell, R., & Chegini, V. (2018). The transverse dynamics of flow in a tidal channel within a greater strait. Ocean Dynamics, 68(2), 239-254. [DOI:10.1007/s10236-017-1127-3]
11. Condie, S., & Condie, R. (2016). Retention of plankton within ocean eddies. Global Ecology and Biogeography, 25(10), 1264-1277. [DOI:10.1111/geb.12485]
12. Azizpour, J., Chegini, V., Khosravi, M., & Einali, A. (2014). Study of the Physical Oceanographic Properties of the Persian Gulf, Strait of Hormuz and Gulf of Oman Based on PG-GOOS CTD Measurements. [Basic and Original Research]. Journal of the Persian Gulf (Marine Science), 5(18), 37-48.
13. Trump, C. L., & Marmorino, G. O. (1998). Use of single-ping bottom-track ADCP data to characterize small-scale bathymetry. Journal of atmospheric and oceanic technology, 15(1), 299-303. https://doi.org/10.1175/1520-0426(1998)015<0299:UOSPBT>2.0.CO;2 [DOI:10.1175/1520-0426(1998)0152.0.CO;2]
14. Fong, D. A., & Monismith, S. G. (2004). Evaluation of the accuracy of a ship-mounted, bottom-tracking ADCP in a near-shore coastal flow. Journal of atmospheric and oceanic technology, 21(7), 1121-1,128. https://doi.org/10.1175/1520-0426(2004)021<1121:EOTAOA>2.0.CO;2 [DOI:10.1175/1520-0426(2004)0212.0.CO;2]
15. Instruments, R. D. (1996). Acoustic Doppler current profiler principles of operation: A practical primer. RD Instruments, 1.
16. Hench, J. L., Luettich, R. A., & Bircher, J. T. (2000). A portable retractable ADCP boom-mount for small boats. Estuaries, 23(3), 392-399. [DOI:10.2307/1353331]
17. Idronaut (2002). Ocean seven 316/319 CTD multiparameter probes operation's manual. In Idronaut (Ed.). Milan.
18. Roberts, J., & Roberts, T. D. (1978). Use of the Butterworth low‐pass filter for oceanographic data. Journal of Geophysical Research: Oceans, 83(C11), 5510-5514. [DOI:10.1029/JC083iC11p05510]
19. Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27, 31-36. [DOI:10.1016/S0003-2670(00)88444-5]
20. Wood, E. D., Armstrong, F., & Richards, F. A. (1967). Determination of nitrate in sea water by cadmium-copper reduction to nitrite. Journal of the marine Biological Association of the United Kingdom, 47(1), 23-31. [DOI:10.1017/S002531540003352X]
21. Andrae, A. (2020). Comparison of different methods for the detection of mesoscale eddy characteristics in the eastern tropical North Atlantic. Christian-Albrechts-Universität zu Kiel,
22. Ji, J., Dong, C., Zhang, B., Liu, Y., Zou, B., King, G. P., et al. (2018). Oceanic eddy characteristics and generation mechanisms in the Kuroshio Extension region. Journal of Geophysical Research: Oceans, 123(11), 8548-8567. [DOI:10.1029/2018JC014196]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.