Write your message
Volume 17, Issue 34 (12-2021)                   marine-engineering 2021, 17(34): 61-72 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadtabar Sorkhi S F, Asgari A. 3D simulation of monopile under wave and wind loads in liquefiable soil. marine-engineering. 2021; 17 (34) :61-72
URL: http://marine-eng.ir/article-1-920-en.html
1- Faculty of Engineering and Technology, University of Mazandaran
Abstract:   (618 Views)
After years of using fossil fuels, the use of renewable energy is now growing. Offshore wind turbines are one of the ways to benefit from clean energy. This article studies the dynamic reactions of offshore wind turbine (OWT) supported on monopile foundation in saturated soil under wave and wind loads separately and combined. The wind load was calculated using the power spectral density function with different velocities and applied to the turbine blade and the turbine tower. To modeling the random waves the Pierson-Moskowitz spectrum is used and the force of sea waves on the body of monopile calculation is based on the diffraction theory. The models are simulated in three-dimensional and written with the help of TCL programming language and analyzed with open-source software OpenSees. The effects of several factors on the dynamic responses of the models are investigated. The results are shown that it is essential to examine the combination of wave and wind loads in the analysis and design of OWT.
Full-Text [PDF 1039 kb]   (240 Downloads)    
Type of Study: Research Paper | Subject: Offshore Structure
Received: 2021/08/11 | Accepted: 2021/10/19

1. Europe, W., (2020), Offshore Wind in Europe: Key trends and statistics 2020.
2. Shi, W., Park, H.-C., Chung, C.-W. and Kim, Y.-C., (2011), in The Twenty-first International Offshore and Polar Engineering Conference. OnePetro.
3. Gupta, B. K., and Basu, D., (2020), Offshore wind turbine monopile foundations: Design perspectives, Ocean Engineering 213, p. 107514. [DOI:10.1016/j.oceaneng.2020.107514]
4. Pechak, O., Mavrotas, G. and Diakoulaki, D.,(2011), Role and contribution of the clean development mechanism to the development of wind energy, Renewable and Sustainable Energy Reviews 15(7), p. 3380-3387. [DOI:10.1016/j.rser.2011.04.030]
5. Bahaj, A. S., (2011), Generating electricity from the oceans, Renewable and Sustainable Energy Reviews 15(7), p. 3399-3416. [DOI:10.1016/j.rser.2011.04.032]
6. Ohlenforst, K., (2019), Global Wind Report 2018.
7. Achmus, M., Kuo, Y.-S. and Abdel-Rahman, K.,(2009), Behavior of monopile foundations under cyclic lateral load, Computers and Geotechnics 36(5), p. 725-735. [DOI:10.1016/j.compgeo.2008.12.003]
8. Paulsen, B. T., De Sonneville, B., Van Der Meulen, M. and Jacobsen, N. G., (2019), Probability of wave slamming and the magnitude of slamming loads on offshore wind turbine foundations, Coastal Engineering 143, p. 76-95. [DOI:10.1016/j.coastaleng.2018.10.002]
9. Slot, R. M., Sorensen, J. D., Sudret, B., Svenningsen, L. and Thogersen, M. L., (2020), Surrogate model uncertainty in wind turbine reliability assessment, Renewable Energy 151, p. 1150-1162. [DOI:10.1016/j.renene.2019.11.101]
10. Wu, X., et al., (2019), Foundations of offshore wind turbines: A review, Renewable and Sustainable Energy Reviews 104, p. 379-393. [DOI:10.1016/j.rser.2019.01.012]
11. Dezvareh, R., (2019), Dynamic analysis of tripod offshore wind turbine under wind and wave loads considering water-structure interaction, Marine Technology 5(4), p. 74-82.
12. Kuhn, M. J., (2001), Dynamics and design optimization of offshore wind energy conversion systems, DUWIND, Delft University Wind Energy Research Institute.
13. Dong, W., Moan, T. and Gao, Z., (2011), Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain, Engineering Structures 33(6), p. 2002-2014. [DOI:10.1016/j.engstruct.2011.02.037]
14. Fayzolahzade, M., and Mahmudi, M., (2015), Trust force-induced vibration analysis of offshore wind turbine tower with fixed monopile platform, Marine Technology 2(1), p. 33-49.
15. Jonkman, J. M., and Buhl Jr, M. L., (2007), Loads analysis of a floating offshore wind turbine using fully coupled simulation, National Renewable Energy Lab. (NREL), Golden, CO (United States).
16. Jonkman, J., Butterfield, S., Musial, W. and Scott, G., (2009), Definition of a 5-MW reference wind turbine for offshore system development, National Renewable Energy Lab. (NREL), Golden, CO (United States). [DOI:10.2172/947422]
17. Asgari, A., Ibsen, L. B., Bagheri, M. and Barari, A., (2014), in Advances in Soil Dynamics and Foundation Engineering, Eds, p. 312-322.
18. Zheng, X. Y., Li, H., Rong, W. and Li, W., (2015), Joint earthquake and wave action on the monopile wind turbine foundation: An experimental study, Marine Structures 44, p. 125-141. [DOI:10.1016/j.marstruc.2015.08.003]
19. Chen, L., Yang, X., Li, L., Wu, W., El Naggar M.H., Wang, K., and Chen, J., (2020), Numerical analysis of the deformation performance of monopile under wave and current load, Energies 13(23), p. 6431. [DOI:10.3390/en13236431]
20. Wang, P., Zhao, M., Du, X., Liu J. and Xu, C.,(2018), Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay, Soil Dynamics and Earthquake Engineering 113, p. 47-57. [DOI:10.1016/j.soildyn.2018.04.028]
21. Jeremic, B., (2001), Development of geotechnical capabilities in OpenSees, Citeseer.
22. Mazzoni, S., Mckenna, F., Scott, M. H. and Fenves, G. L.,(2006), OpenSees command language manual, Pacific Earthquake Engineering Research (PEER) Center 264, p. 137-158.
23. Prevost, J. H., (1985), A simple plasticity theory for frictional cohesionless soils, International Journal of Soil Dynamics and Earthquake Engineering 4(1), p. 9-17. [DOI:10.1016/0261-7277(85)90030-0]
24. Elgamal, A., Yan, L., Yang, Z. and Conte, J. P., (2008), Three-dimensional seismic response of Humboldt Bay bridge-foundation-ground system, Journal of Structural Engineering 134(7), p. 1165-1176. [DOI:10.1061/(ASCE)0733-9445(2008)134:7(1165)]
25. Law, H. K., and Lam, I. P., (2001), Application of periodic boundary for large pile group, Journal of Geotechnical and Geoenvironmental Engineering 127(10), p. 889-892. [DOI:10.1061/(ASCE)1090-0241(2001)127:10(889)]
26. Asgari, A., Oliaei, M., and Bagheri, M., (2013), Numerical simulation of improvement of a liquefiable soil layer using stone column and pile-pinning techniques, Soil Dynamics and Earthquake Engineering 51, p. 77-96. [DOI:10.1016/j.soildyn.2013.04.006]
27. Elgamal, A., Lu, J. and Forcellini, D., (2009), Mitigation of liquefaction-induced lateral deformation in a sloping stratum: Three-dimensional numerical simulation, Journal of geotechnical and geoenvironmental engineering 135(11), p. 1672-1682. [DOI:10.1061/(ASCE)GT.1943-5606.0000137]
28. He, L., Ramirez, J., Jinchi Lu, J., Tang L., Elgamal A., and Tokimatsu K., (2017), Lateral spreading near deep foundations and influence of soil permeability, Canadian Geotechnical Journal 54(6), p. 846-861. [DOI:10.1139/cgj-2016-0162]
29. Malekjafarian, A., Jalilvand, S., Doherty, P. and Igoe, D., (2021), Foundation damping for monopile supported offshore wind turbines: A review, Marine Structures 77, p. 102937. [DOI:10.1016/j.marstruc.2021.102937]
30. Gerolymos, N., Escoffier, S., Gazetas, G. and Garnier, J., (2009), Numerical modeling of centrifuge cyclic lateral pile load experiments, Earthquake Engineering and Engineering Vibration 8(1), p. 61-76. [DOI:10.1007/s11803-009-9005-8]
31. Van Binh, L., Ishihara, T., Van Phuc, P. and Fugino, Y., (2008), A peak factor for non-Gaussian response analysis of wind turbine tower, Journal of Wind Engineering and Industrial Aerodynamics 96(10-11), p. 2217-2227. [DOI:10.1016/j.jweia.2008.02.019]
32. Veritas, D. N., (2010), Recommended practice DNV-RP-C205: environmental conditions and environmental loads, DNV, Norway.
33. Scanlan, R. H., (1993), Problematics in formulation of wind-force models for bridge decks, Journal of engineering mechanics 119(7), p. 1353-1375. [DOI:10.1061/(ASCE)0733-9399(1993)119:7(1353)]
34. Deodatis, G., (1996), Simulation of ergodic multivariate stochastic processes, Journal of engineering mechanics 122(8), p. 778-787. [DOI:10.1061/(ASCE)0733-9399(1996)122:8(778)]
35. Lee, S., Kim, H. and Lee, S., (2010), Analysis of aerodynamic characteristics on a counter-rotating wind turbine, Current Applied Physics 10(2), p. S339-S342. [DOI:10.1016/j.cap.2009.11.073]
36. Maccamy, R. and Fuchs, R. A., (1954), Wave forces on piles: a diffraction theory, US Beach Erosion Board.
37. Oh, K.-Y., Kim, J.-Y., and Lee, J.-S., (2013), Preliminary evaluation of monopile foundation dimensions for an offshore wind turbine by analyzing hydrodynamic load in the frequency domain, Renewable energy 54, p. 211-218. [DOI:10.1016/j.renene.2012.08.007]
38. Ahmadtabar Sorkhi, F. and Asgari, A., (2021), Wind responses of offshore wind turbine on monopiles foundation in Liquefiable sandy soil, 7th Iran Wind Energy Conference.
39. Li, M., Zhang, H. and Guan, H., (2011), Study of offshore monopile behaviour due to ocean waves, Ocean Engineering 38(17-18), p. 1946-1956. [DOI:10.1016/j.oceaneng.2011.09.022]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.