1. Deo, M.C., Jha, A., Chaphekar, A.S., and Ravikant, K, (2001), Wave prediction using neuralnetworks, Journal of Ocean Engineering, Vol. 28, No. 7, pp. 889-898. [
DOI:10.1016/S0029-8018(00)00027-5]
2. Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., and Hasselmann, S., P. Janssen, (1994), Dynamics and Modelling of Ocean Waves, Cambridge University Press. [
DOI:10.1017/CBO9780511628955]
3. Londhe, S.N., and Panchang, V.G., (2006), One-day wave forecasts based on artificial neural networks, Journal of Atmospheric and Oceanic Technology. AMS, Vol. 23, No. 11, pp. 1593-1603. [
DOI:10.1175/JTECH1932.1]
4. Ponce de León, S., and Guedes Soares, C. (2015), Hindcast of extreme sea states in North Atlantic Extratropical storms, Jourbal of Ocean Dynamics, Vol. 65, No. 2, pp. 241-254. [
DOI:10.1007/s10236-014-0794-6]
5. Tolman, H.L., (2014), The WAVEWATCH III Development Group, User manual and system documentation version 4018, Tech. Note 316, NOAA/NWS/NCEP/MMAB. 282.
6. Jain, P., and Deo, M.C., (2007), Real-time wave forecasts off The Western Indian Coast, Journal of Applied Ocean Research. Vol. 29, pp. 72-79. [
DOI:10.1016/j.apor.2007.05.003]
7. Mahmoodi, K., Ghassemi, H., and Nowruzi, H., (2017), Data mining models to predict ocean wave energy flux in the absence of wave records, Science Journal of Maritime University of Szczecin, Vol. 49, No. 49, pp. 119-129.
8. Berbić, J., Ocvirk, E., Carević, D., and Lončar, G., (2017), Application of neural networks and support vector machine for significant wave height prediction, Journal of Oceanologia, Vol. 59, pp. 331-349. [
DOI:10.1016/j.oceano.2017.03.007]
9. Nikoo, M. R., Kerachian, R., Alizadeh, M. R., (2018), A fuzzy KNN-based model for significant wave height prediction in large lakes, Journal of Oceanologia, Vol. 60, No. 2, pp. 153-168. [
DOI:10.1016/j.oceano.2017.09.003]
10. Krishna Kumar, N., Savitha, R., Al Mamun, A., (2018), Ocean wave height prediction using ensemble of Extreme Learning Machine, Journal of Neurocomputing, Vol. 277, pp. 12-20. [
DOI:10.1016/j.neucom.2017.03.092]
11. Jain, P., and Deo M.C., (2006), Neural networks in ocean engineering, International Journal of Ships and Offshore Structures, Vol. 1, pp. 25-35. [
DOI:10.1533/saos.2004.0005]
12. Dixit, P., and Londhe, S. (2016), Prediction of extreme wave heights using neuro wavelet technique, Journal of Applied Ocean Research, Vol. 58, pp. 241-252. [
DOI:10.1016/j.apor.2016.04.011]
13. Krishna Kumar, N., Savitha, R., Al Mamun, A., (2017), Regional ocean wave height prediction using sequential learning neural networks, Journal of Ocean Engineering, Vol. 129, pp. 605-612. [
DOI:10.1016/j.oceaneng.2016.10.033]
14. Shukla, R. P., Kinter, J. L., Shin, C., S. (2018), Sub-seasonal prediction of significant wave heights over the Western Pacific and Indian Oceans, part II: The impact of ENSO and MJO, Journal of Ocean Modelling, Vol. 123, pp. 1-15 [
DOI:10.1016/j.ocemod.2018.01.002]
15. 10- Krishna Kumar, N., Savitha, R., Al Mamun, A., (2018), Ocean wave characteristics prediction and its load estimation on marine structures: A transfer learning approach, Journal Marine Structures, Vol. 61, pp. 202-219. [
DOI:10.1016/j.marstruc.2018.05.007]
16. Breuning, M., Kriegel, H-P., Ng, R., and Sander, J., (2000), LOF: Identifying Density Based Local Outliers, In Proceeding of ACM SIGMOD International Conference on Management of Data (SIGMOD'00), Dallas, Texas, pp. 93-104. [
DOI:10.1145/335191.335388]
17. Vaghefi, M., Mahmoodi, K., and Akbari, M (2018), A Comparison among Data Mining Algorithms for Outlier Detection using Flow Pattern Experiments. Scientia Iranica. doi: 10.24200/sci.2017.4182 [
DOI:10.24200/sci.2017.4182]
18. Vaghefi, M., Mahmoodi, K., and Akbari, M. (2019). Detection of Outlier in 3D Flow Velocity Collection in an Open-Channel Bend Using Various Data Mining Techniques. Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 43, pp. 197-214. doi: 10.1007/s40996-018-0131-2 [
DOI:10.1007/s40996-018-0131-2]
19. Schmidhuber, J. (2015), Deep Learning in Neural Networks: An Overview, Neural Networks, Vol. 61, pp. 85-117. arXiv:1404.7828. [
DOI:10.1016/j.neunet.2014.09.003]
20. http://www.ndbc.noaa.gov
21. Rasheed, S., and Sasikumar, K. (2015), Modelling Vertical Infiltration in an Unsaturated Porous Media Using Neural Network Architecture, Aquatic Procedia, Vol. 4, pp. 1008-1015. [
DOI:10.1016/j.aqpro.2015.02.127]