Write your message
Volume 15, Issue 30 (1-2020)                   Marine Engineering 2020, 15(30): 23-40 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahmoodi K, Ghassemi H, Razminia A. Proposed a New Hybrid LOF-ANN Method to Extreme Wave Height Prediction based on Meteorological Data. Marine Engineering 2020; 15 (30) :23-40
URL: http://marine-eng.ir/article-1-703-en.html
1- Faculty of Marine Technology, Amirkabir University of Technology
2- Electrical Engineering Department, School of Engineering, Persian Gulf University
Abstract:   (3959 Views)
Extreme wave height prediction is very challenging due to its very high non-stationarity and non-linearity nature. The main aim of the present study is to propose a new hybrid method based on Local Outlier Factor and Artificial Neural Networks classifier, called LOF-ANN, to accurate prediction of extreme wave height occurrence using historical meteorological data. In this study to create models two major hurricanes Dean 2007 and Irene 2011at two locations (NDBC wave buoys stations: http://www.ndbc.noaa.gov) namely; 41004, 41041 in the Gulf of Mexico, is used. TO detect extreme waves, LOF method is used. The outputs of this method are considered as ANN targets. Extreme and normal waves are considered as Class 0 and class 1, respectively. The inputs of ANN models are historical metrological data, including: Wind direction (WDIR), Wind speed (WSPD), Sea level pressure (PRES), Air temperature (ATMP), and Sea surface temperature (WTMP). To create and evaluation of models, the input data sets are randomly divided into training (80%) and test set (20%). The performance of created models is evaluated using three popular criteria Root Mean Square Error (RMSE) and Receiver Operating Characteristic (ROC) and accuracy parameter. The experiment results show that the proposed method is able to predict the occurrence of extreme wave heights with height accuracy (up to 99%).
Full-Text [PDF 2123 kb]   (1795 Downloads)    
Type of Study: Research Paper | Subject: Offshore Hydrodynamic
Received: 2018/12/10 | Accepted: 2019/09/29

References
1. Deo, M.C., Jha, A., Chaphekar, A.S., and Ravikant, K, (2001), Wave prediction using neuralnetworks, Journal of Ocean Engineering, Vol. 28, No. 7, pp. 889-898. [DOI:10.1016/S0029-8018(00)00027-5]
2. Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., and Hasselmann, S., P. Janssen, (1994), Dynamics and Modelling of Ocean Waves, Cambridge University Press. [DOI:10.1017/CBO9780511628955]
3. Londhe, S.N., and Panchang, V.G., (2006), One-day wave forecasts based on artificial neural networks, Journal of Atmospheric and Oceanic Technology. AMS, Vol. 23, No. 11, pp. 1593-1603. [DOI:10.1175/JTECH1932.1]
4. Ponce de León, S., and Guedes Soares, C. (2015), Hindcast of extreme sea states in North Atlantic Extratropical storms, Jourbal of Ocean Dynamics, Vol. 65, No. 2, pp. 241-254. [DOI:10.1007/s10236-014-0794-6]
5. Tolman, H.L., (2014), The WAVEWATCH III Development Group, User manual and system documentation version 4018, Tech. Note 316, NOAA/NWS/NCEP/MMAB. 282.
6. Jain, P., and Deo, M.C., (2007), Real-time wave forecasts off The Western Indian Coast, Journal of Applied Ocean Research. Vol. 29, pp. 72-79. [DOI:10.1016/j.apor.2007.05.003]
7. Mahmoodi, K., Ghassemi, H., and Nowruzi, H., (2017), Data mining models to predict ocean wave energy flux in the absence of wave records, Science Journal of Maritime University of Szczecin, Vol. 49, No. 49, pp. 119-129.
8. Berbić, J., Ocvirk, E., Carević, D., and Lončar, G., (2017), Application of neural networks and support vector machine for significant wave height prediction, Journal of Oceanologia, Vol. 59, pp. 331-349. [DOI:10.1016/j.oceano.2017.03.007]
9. Nikoo, M. R., Kerachian, R., Alizadeh, M. R., (2018), A fuzzy KNN-based model for significant wave height prediction in large lakes, Journal of Oceanologia, Vol. 60, No. 2, pp. 153-168. [DOI:10.1016/j.oceano.2017.09.003]
10. Krishna Kumar, N., Savitha, R., Al Mamun, A., (2018), Ocean wave height prediction using ensemble of Extreme Learning Machine, Journal of Neurocomputing, Vol. 277, pp. 12-20. [DOI:10.1016/j.neucom.2017.03.092]
11. Jain, P., and Deo M.C., (2006), Neural networks in ocean engineering, International Journal of Ships and Offshore Structures, Vol. 1, pp. 25-35. [DOI:10.1533/saos.2004.0005]
12. Dixit, P., and Londhe, S. (2016), Prediction of extreme wave heights using neuro wavelet technique, Journal of Applied Ocean Research, Vol. 58, pp. 241-252. [DOI:10.1016/j.apor.2016.04.011]
13. Krishna Kumar, N., Savitha, R., Al Mamun, A., (2017), Regional ocean wave height prediction using sequential learning neural networks, Journal of Ocean Engineering, Vol. 129, pp. 605-612. [DOI:10.1016/j.oceaneng.2016.10.033]
14. Shukla, R. P., Kinter, J. L., Shin, C., S. (2018), Sub-seasonal prediction of significant wave heights over the Western Pacific and Indian Oceans, part II: The impact of ENSO and MJO, Journal of Ocean Modelling, Vol. 123, pp. 1-15 [DOI:10.1016/j.ocemod.2018.01.002]
15. 10- Krishna Kumar, N., Savitha, R., Al Mamun, A., (2018), Ocean wave characteristics prediction and its load estimation on marine structures: A transfer learning approach, Journal Marine Structures, Vol. 61, pp. 202-219. [DOI:10.1016/j.marstruc.2018.05.007]
16. Breuning, M., Kriegel, H-P., Ng, R., and Sander, J., (2000), LOF: Identifying Density Based Local Outliers, In Proceeding of ACM SIGMOD International Conference on Management of Data (SIGMOD'00), Dallas, Texas, pp. 93-104. [DOI:10.1145/335191.335388]
17. Vaghefi, M., Mahmoodi, K., and Akbari, M (2018), A Comparison among Data Mining Algorithms for Outlier Detection using Flow Pattern Experiments. Scientia Iranica. doi: 10.24200/sci.2017.4182 [DOI:10.24200/sci.2017.4182]
18. Vaghefi, M., Mahmoodi, K., and Akbari, M. (2019). Detection of Outlier in 3D Flow Velocity Collection in an Open-Channel Bend Using Various Data Mining Techniques. Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 43, pp. 197-214. doi: 10.1007/s40996-018-0131-2 [DOI:10.1007/s40996-018-0131-2]
19. Schmidhuber, J. (2015), Deep Learning in Neural Networks: An Overview, Neural Networks, Vol. 61, pp. 85-117. arXiv:1404.7828. [DOI:10.1016/j.neunet.2014.09.003]
20. http://www.ndbc.noaa.gov
21. Rasheed, S., and Sasikumar, K. (2015), Modelling Vertical Infiltration in an Unsaturated Porous Media Using Neural Network Architecture, Aquatic Procedia, Vol. 4, pp. 1008-1015. [DOI:10.1016/j.aqpro.2015.02.127]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.