1. Mohammad Alinejad R, Bayat M, Nadi B, Pakbaz MS (2021) Response of pile group adjacent to a slope crest under static axial loading. Arabian Journal of Geosciences 14:1-12. [
DOI:10.1007/s12517-021-09123-7]
2. Bian X, Liang Y, Zhao C, et al (2020) Centrifuge testing and numerical modeling of single pile and long-pile groups adjacent to surcharge loads in silt soil. Transportation Geotechnics 25:100399. [
DOI:10.1016/j.trgeo.2020.100399]
3. Malik AA, Kuwano J, Tachibana S, Maejima T (2017) End bearing capacity comparison of screw pile with straight pipe pile under similar ground conditions. Acta Geotechnica 12:415-428. [
DOI:10.1007/s11440-016-0482-4]
4. Haghbin M, Ghazavi M (2016) Seismic Bearing Capacity of Strip Footings on Pile-Stabilized Slopes. Civil Engineering Infrastructures Journal 49:111-126. [
DOI:10.7508/ceij.2016.01.008]
5. Hakimelahi N, Bayat M, Ajalloeian R, Nadi B (2023) Effect of woven geotextile reinforcement on mechanical behavior of calcareous sands. Case Studies in Construction Materials 18:e02014. [
DOI:10.1016/j.cscm.2023.e02014]
6. Tavakol K, Bayat M, Nadi B, Ajalloeian R (2023) Combined Influences of Cement, Rice Husk Ash and Fibre on the Mechanical Characteristics of a Calcareous Sand. KSCE J Civ Eng. [
DOI:10.1007/s12205-023-0695-7]
7. Choo H, Kwon M, Touiti L, Jung YH (2020) Creep of calcareous sand in Tunisia: effect of particle breakage at low stress level. International Journal of Geo-Engineering 11:. [
DOI:10.1186/s40703-020-00123-2]
8. Wang Z (2010) Soil creep behavior: laboratory testing and numerical modelling. University of Calgary
9. Ramadan MI, Meguid M (2020) Behavior of cantilever secant pile wall supporting excavation in sandy soil considering pile-pile interaction. Arabian Journal of Geosciences 13:1-13. [
DOI:10.1007/s12517-020-05483-8]
10. Reddy ES, Chapman DN, Sastry VVRN (2000) Direct Shear Interface Test for Shaft Capacity of Piles in Sand. Geotechnical Testing Journal 23:199-205.
https://doi.org/10.1520/GTJ11044J [
DOI:10.1520/gtj11044j]
11. Chen RP, Zhou WH, Chen YM (2009) Influences of soil consolidation and pile load on the development of negative skin friction of a pile. Computers and Geotechnics 36:1265-1271. [
DOI:10.1016/j.compgeo.2009.05.011]
12. Deb P, Pal SK (2021) Interaction behavior and load sharing pattern of piled raft using nonlinear regression and LM algorithm-based artificial neural network. Frontiers of Structural and Civil Engineering 15:1181-1198. [
DOI:10.1007/s11709-021-0744-6]
13. Al-Mhaidib AI (2005) Loading rate effects on pile groups in clay. Electronic Journal of Geotechnical Engineering 10 E:
14. Tomlinson M, Woodward J (2007) Pile Design and Construction Practice. In: Pile Design and Construction Practice. https://www.routledge.com/Pile-Design-and-Construction-Practice/Tomlinson-Woodward/p/book/9780367659011. Accessed 13 Apr 2021 [
DOI:10.4324/9780203964293]
15. Alinejad RM, Bayat M, Nadi B, Pakbaz MS (2023) Experimental Study of Axially Loaded Pile Group Near a Sloping Ground. Period Polytech Civil Eng. [
DOI:10.3311/PPci.18334]
16. Aldaeef AA, Rayhani MT (2019) Interface shear strength characteristics of steel piles in frozen clay under varying exposure temperature. Soils and Foundations 59:2110-2124. [
DOI:10.1016/j.sandf.2019.11.003]
17. Aldaeef AA, Rayhani MT (2021) Pile-soil interface characteristics in ice-poor frozen ground under varying exposure temperature. Cold Regions Science and Technology 191:103377. [
DOI:10.1016/j.coldregions.2021.103377]
18. Su LJ, Zhou WH, Chen W Bin, Jie X (2018) Effects of relative roughness and mean particle size on the shear strength of sand-steel interface. Measurement: Journal of the International Measurement Confederation 122:339-346. [
DOI:10.1016/j.measurement.2018.03.003]
19. Noroozi AG, Ajalloeian R, Bayat M (2022) Effect of FTC on the interface between soil materials and asphalt concrete using a direct shear test. Case Studies in Construction Materials 17:e01632. [
DOI:10.1016/j.cscm.2022.e01632]
20. Noroozi AG, Ajalloeian R, Bayat M (2022) Experimental study of the role of interface element in earth dams with asphalt concrete core - Case study: Mijran dam. Case Studies in Construction Materials 16:e01004. [
DOI:10.1016/j.cscm.2022.e01004]
21. Janipour AK, Mousivand M, Bayat M (2022) Study of interface shear strength between sand and concrete. Arab J Geosci 15:172. [
DOI:10.1007/s12517-021-09394-0]
22. Tang L, Du Y, Liu L, et al (2021) Experimental study of the frozen soil-structure interface shear strength deterioration mechanism during thawing. Arabian Journal of Geosciences 14:. [
DOI:10.1007/s12517-021-08673-0]
23. Zhao L, Yang P, Wang JG, Zhang LC (2014) Cyclic direct shear behaviors of frozen soil-structure interface under constant normal stiffness condition. Cold Regions Science and Technology 102:52-62. [
DOI:10.1016/j.coldregions.2014.03.001]
24. Chen X, Zhang J, Xiao Y, Li J (2015) Effect of roughness on shear behavior of red clay-concrete interface in large-scale direct shear tests. Canadian Geotechnical Journal 52:1122-1135. [
DOI:10.1139/cgj-2014-0399]
25. Wang H-L, Zhou W-H, Yin Z-Y, Jie X-X (2019) Effect of Grain Size Distribution of Sandy Soil on Shearing Behaviors at Soil-Structure Interface. Journal of Materials in Civil Engineering 31:04019238.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002880 [
DOI:10.1061/(asce)mt.1943-5533.0002880]
26. Yang P, Xue SB, Song L, Duan M shi (2018) Interface shear characteristics of dredger fill and concrete using large size direct shear test. International Journal of Geo-Engineering 9:. [
DOI:10.1186/s40703-018-0081-3]
27. Hu L, Pu J (2004) Testing and Modeling of Soil-Structure Interface. Journal of Geotechnical and Geoenvironmental Engineering 130:851-860.
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(851) [
DOI:10.1061/(asce)1090-0241(2004)130:8(851)]
28. Jotisankasa A, Rurgchaisri N (2018) Shear strength of interfaces between unsaturated soils and composite geotextile with polyester yarn reinforcement. Geotextiles and Geomembranes 46:338-353. [
DOI:10.1016/j.geotexmem.2017.12.003]
29. Di Donna A, Ferrari A, Laloui L (2016) Experimental investigations of the soil-concrete interface: Physical mechanisms, cyclic mobilization, and behaviour at different temperatures. Canadian Geotechnical Journal 53:659-672. [
DOI:10.1139/cgj-2015-0294]
30. Angemeer J, Carlson E, Klick JH (1978) Techniques and results of offshore pile load testing in Calcareous soils. Proceedings of the Annual Offshore Technology Conference 1973-April:II677-II692.
https://doi.org/10.4043/1894-MS [
DOI:10.4043/1894-ms]
31. Dyson GJ, Randolph MF (2001) Monotonic Lateral Loading of Piles in Calcareous Sand. Journal of Geotechnical and Geoenvironmental Engineering 127:346-352.
https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(346) [
DOI:10.1061/(asce)1090-0241(2001)127:4(346)]
32. Tabucanon JT, Airey DW, Poulos HG (1995) Pile skin friction in sands from constant normal stiffness tests. Geotechnical Testing Journal 18:350-364.
https://doi.org/10.1520/GTJ11004J [
DOI:10.1520/gtj11004j]
33. Lehane BM, Schneider JA, Lim JK, Mortara G (2012) Shaft Friction from Instrumented Displacement Piles in an Uncemented Calcareous Sand. Journal of Geotechnical and Geoenvironmental Engineering 138:1357-1368.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000712 [
DOI:10.1061/(asce)gt.1943-5606.0000712]
34. Jiang H, Wang R, Lü YH, Meng QS (2010) Test study of model pile in calcareous sands. Yantu Lixue/Rock and Soil Mechanics 31:780-784
35. Nauroy JF, LeTirant P (1985) Driven piles and drilled and grouted piles in calcareous sands. Proceedings of the Annual Offshore Technology Conference 1985-May:83-91.
https://doi.org/10.4043/4850-MS [
DOI:10.4043/4850-ms]
36. McDowell GR, Bolton MD (2000) Effect of particle size distribution on pile tip resistance in calcareous sand in the geotechnical centrifuge. Granular Matter 2:179-187. [
DOI:10.1007/PL00010913]
37. Ismael NF (1989) Skin Friction Of Driven Piles In Calcareous Sands. Journal of Geotechnical Engineering 115:135-139. [
DOI:10.1061/(ASCE)0733-9410(1989)115:1(135)]
38. Ismael NF, Al-Sanad HA (1986) Uplift capacity of bored piles in calcareous soils. Journal of Geotechnical Engineering 112:928-940. [
DOI:10.1061/(ASCE)0733-9410(1986)112:10(928)]
39. Cui MJ, Zheng JJ, Chu J, et al (2021) Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand. Acta Geotechnica 16:1377-1389. [
DOI:10.1007/s11440-020-01099-0]
40. Donohue S, O'Sullivan C, Long M (2009) Particle breakage during cyclic triaxial loading of a carbonate sand. Geotechnique 59:477-482. [
DOI:10.1680/geot.2008.T.003]
41. Jafarian Y, Javdanian H (2020) Dynamic Properties of Calcareous Sand from the Persian Gulf in Comparison with Siliceous Sands Database. International Journal of Civil Engineering 18:245-249. [
DOI:10.1007/s40999-019-00402-9]
42. Spagnoli G, Doherty P, Wu D, Doherty M (2015) Some mineralogical and geotechnical properties of carbonate and silica sands in relation to a novel mixed-in-place pile. Offshore Mediterranean Conference and Exhibition, OMC 2015
43. Kou H lei, Diao W zhou, Zhang W chun, et al (2021) Experimental Study of Interface Shearing between Calcareous Sand and Steel Plate Considering Surface Roughness and Particle Size. Applied Ocean Research 107:102490. [
DOI:10.1016/j.apor.2020.102490]
44. He SH, Shan HF, Xia TD, et al (2021) The effect of temperature on the drained shear behavior of calcareous sand. Acta Geotechnica 16:613-633. [
DOI:10.1007/s11440-020-01030-7]
45. Das BM (2021) Principles of geotechnical engineering. Cengage learning
46. Bowles JE (1988) Foundation analysis and design