1. [1]. IMO. 2015. Third IMO greenhouse gas study 2014, exec, summary and final report, Technical Report, IMO, London, UK.
2. [2]. Roskilly AP, Palacin R, Yan J. 2015. Novel technologies and strategies for clean transport systems. Appl Energy. 157:533-536. [
DOI:10.1016/j.apenergy.2015.09.051]
3. [3]. Harvald SA. 1983. Resistance and propulsion of ships, Volume 12 of Ocean engineering,Wiley.
4. [4]. Norrbin, N.H., 1971. Theory and observations of on the use of a mathematical model for ship manoeuvring in deep and confined waters. SSPA Gothenbg. Swed. 68.
5. [5]. Abkowitz, M.A., 1964. Lectures on Ship Hydrodynamics - Steering and Maneuvering (No. Hy-5). Hydro & Aerodynamic Laboratory, Lyngby, Denmark.
6. [6]. Burcher, R.K., 1991. The prediction of the manoeuvring characteristics of vessels. Philos. Trans. R. Soc. Lond. Ser. Phys. Eng. Sci. 334, 265-279.
https://doi.org/10.1098/rsta.1991.0013 [
DOI:10.1098/ rsta.1991.0013.]
7. [7]. Holtrop, J., Mennen, G.G.J., 1982. An approximate power prediction method. Int. Shipbuild. Prog. 29. [
DOI:10.3233/ISP-1982-2933501]
8. [8]. Smitt, W.L., 1970. Steering and manoeuvring full-scale and model tests (Part 1). Eur. Shipbuild. 19.
9. [9]. Inoue, S., Hirano, M., Kijima, K., Takashina, J., 1981. A practical calculation method OF SHIP maneuvering. MOTION 28, 207-222. [
DOI:10.3233/ISP-1981-2832502]
10. [10]. Ankudinov, V., 1987. Ship Maneuvrability Assessment in Ship Design: Simulation Concept. Presented at the International Ship Manoeuvering Conference, London.
11. [11]. Kijima, K., Tanaka, S., Furukawa, Y., Hori, T., 1993. On a prediction method of ship manoeuvring characteristics. Presented at the Proceedings of MARSIM 93, 285-294.
12. [12]. S. Tavakoli, S. Najafi, E. Amini, A. Dashtimansh, Ship acceleration motion under the action of a propulsion system: a combined empirical method for simulation and optimization, Journal of Marine Engineering & Technology (2020). [
DOI:10.1080/20464177.2020.1827490]
13. [13]. H. Zeraatgar, M. H.Ghaemi, The analysis of overall ship fuel consumption in acceleration maneuver using hull propeller-engine interaction principles and governor features. POLISH MARITIME RESEARCH 1 (101) 2019 Vol. 26; pp. 162-173 10.2478/pomr-2019-0018. [
DOI:10.2478/pomr-2019-0018]
14. [14]. Simman, 2014. 2nd workshop on verification and validation of ship manoeuvring simulation methods [WWW document]. https://simman2014.dk accessed 4.20.21.
15. [15]. NMRI, 2015. A workshop on CFD in ship hydrodynamics [WWW document]. http:// www. t2015. nmri. go. jp accessed 5.30.20.
16. [16]. NuTTS, 2019. 22ND NUMERICAL TOWING TANK SYMPOSIUM [WWW document].htt ps://www.wavec.org/en/events/22nd-numerical towing-tank-symposium- nutts- 2019 accessed 5.30.20.
17. [17]. H. Jasak, V. Vukcevic, I. Gatin, I. Lalovic, CFD validation and grid sensitivity studies of full-scale ship self-propulsion, International Journal of Naval Architecture and Ocean Engineering xxx (2018) 1-11. [
DOI:10.1016/j.ijnaoe.2017.12.004]
18. [18]. S. Duman, S. Bal, Prediction of the acceleration and stopping manoeuvres of a bare hull surface combatant by closed-form solutions and CFD, Ocean Engineering 235 (2021) 109428. [
DOI:10.1016/j.oceaneng.2021.109428]
19. [19]. Simman, 2014, https://simman2020.dk/.
20. [20]. ITTC Recommended Procedures and Guidelines, 2014. Practical guidelines for ship CFD applications. 7.5-03 -02-03.
21. [21]. CD-Adapco,2019. User guide Star-CCM+ Version 14.04.
22. [22]. J.H. Ferziger, M. Perić, Solution of the Navier-Stokes's equations, Computational Methods for Fluid Dynamics, Springer, Berlin, Heidelberg, 2002, pp. 157-216. [
DOI:10.1007/978-3-642-56026-2_7]
23. [23]. F. Stern, R.V. Wilson, H.W. Coleman, E.G. Paterson, Comprehensive approach to verification and validation of CFD simulations - Part 1: methodology and procedures, J. Fluid Eng. 23 (4) (2001) 793-802. [
DOI:10.1115/1.1412235]
24. [24]. ITTC Recommended Procedures and Guidelines, 2017. Uncertainty analysis in CFD verification and validation methodology and procedures. 7.5-03-01-01.
25. [25]. A. Mofidi, A. Castro, P. M. Carrica, 2016. Self-propulsion and course keeping of ONR Tumblehome in calm water and waves. In: Proceedings of Tokyo 2015 CFD Workshop in ship hydrodynamics, vol III, pp 303-308.
26. [26]. Wang, J., Zou L., Wan, D. 2017. CFD simulations of free running ship under course keeping control, Ocean Engineering 141. 450-464. [
DOI:10.1016/j.oceaneng.2017.06.052]
27. [27] Lee, J.-H., & Suh, S.-B. 2019. A Study on the Estimation of the Effective Wake Ratio for ONR Tumblehome by the Numerical Analysis. Journal of the Society of Naval Architects of Korea. The Society of Naval Architects of Korea.
https://doi.org/10.3744/SNAK.2019.56.2.109 [
DOI:10.3744/snak.2019.56.2.109.]
28. [28]. ITTC Recommended Procedures and Guidelines, 2017. Practical guidelines for ship self-propulsion CFD. 7.5-03-03 01.
29. [29]. Zhang, Z., Liu, L., Yu, J., Yang, W., Zhang, Z., and Kaijun J. 2021. Numerical simulation of ONR Tumblehome self-propulsion using discretized propeller and body-force models. Paper presented at the the 31st International Ocean and Polar Engineering Conference, Rhodes, Greece, June 2021.
30. [30]. Delen, C., Bal, S. 2020 Uncertainty analysis of numerical and experimental resistance tests for ONR Tumblehome. Sustainable Development and Innovations in Marine Technologies - Georgiev & Guedes Soares (eds) 2020 Taylor & Francis Group, London, ISBN 978-0-367-40951-7.