1. Z. Wang, X.-L. Zhao, G. Xian, G. Wu, R. K. Singh Raman, S. Al-Saadi, and A. Haque, (2017), Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment, Construction and Building Materials, vol. 139, pp. 467-489,
https://doi.org/10.1016/j.conbuildmat.2017.02.038 [
DOI:10.1016/j.conbuildmat.2017.02.038.]
2. V. M. Karbhari, "1 - Introduction: the use of composites in civil structural applications," in Durability of Composites for Civil Structural Applications, V. M. Karbhari Ed.: Woodhead Publishing, 2007, pp. 1-10,
https://doi.org/10.1533/9781845693565.1 [
DOI:10.1533/9781845693565.1.]
3. Z. Lu, G. Xian, and H. Li, (2015), Effects of exposure to elevated temperatures and subsequent immersion in water or alkaline solution on the mechanical properties of pultruded BFRP plates, Composites Part B: Engineering, vol. 77, pp. 421-430,
https://doi.org/10.1016/j.compositesb.2015.03.066 [
DOI:10.1016/j.compositesb.2015.03.066.]
4. O. Starkova, K. Aniskevich, and J. Sevcenko, (2021), Long-term moisture absorption and durability of FRP pultruded rebars, Materials Today: Proceedings, vol. 34, pp. 36-40,
https://doi.org/10.1016/j.matpr.2019.12.154 [
DOI:10.1016/j.matpr.2019.12.154.]
5. H. Naderpour and S. A. Alavi, (2017), A proposed model to estimate shear contribution of FRP in strengthened RC beams in terms of Adaptive Neuro-Fuzzy Inference System, Composite Structures, vol. 170, pp. 215-227,
https://doi.org/10.1016/j.compstruct.2017.03.028 [
DOI:10.1016/j.compstruct.2017.03.028.]
6. K. Zhang, K. Zhang, and R. Bao, (2023), Machine learning models to predict the residual tensile strength of glass fiber reinforced polymer bars in strong alkaline environments: A comparative study, Journal of Building Engineering, vol. 73, p. 106817,
https://doi.org/10.1016/j.jobe.2023.106817 [
DOI:10.1016/j.jobe.2023.106817.]
7. M. Iqbal, D. Zhang, F. E. Jalal, and M. Faisal Javed, (2021), Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment, Ocean Engineering, vol. 232, p. 109134,
https://doi.org/10.1016/j.oceaneng.2021.109134 [
DOI:10.1016/j.oceaneng.2021.109134.]
8. T. Gates, "1 - The physical and chemical ageing of polymeric composites," in Ageing of Composites, R. Martin Ed.: Woodhead Publishing, 2008, pp. 3-33,
https://doi.org/10.1533/9781845694937.1.3 [
DOI:10.1533/9781845694937.1.3.]
9. J. Comyn, "Diffusion of Water in Adhesives," in Design of Adhesive Joints Under Humid Conditions, L. F. M. da Silva and C. Sato Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1-19, 10.1007/978-3-642-37614-6_1. [
DOI:10.1007/978-3-642-37614-6_1]
10. J. Summerscales, "1 - Materials selection for marine composites," in Marine Composites, R. Pemberton, J. Summerscales, and J. Graham-Jones Eds.: Woodhead Publishing, 2019, pp. 3-30,
https://doi.org/10.1016/B978-0-08-102264-1.00001-7 [
DOI:10.1016/B978-0-08-102264-1.00001-7.]
11. C. Machello, M. Bazli, A. Rajabipour, H. M. Rad, M. Arashpour, and A. Hadigheh, (2023), Using machine learning to predict the long-term performance of fibre-reinforced polymer structures: A state-of-the-art review, Construction and Building Materials, vol. 408, p. 133692,
https://doi.org/10.1016/j.conbuildmat.2023.133692 [
DOI:10.1016/j.conbuildmat.2023.133692.]
12. G. Hota, W. Barker, and A. Manalo, (2020), Degradation mechanism of glass fiber/vinylester-based composite materials under accelerated and natural aging, Construction and Building Materials, vol. 256, p. 119462,
https://doi.org/10.1016/j.conbuildmat.2020.119462 [
DOI:10.1016/j.conbuildmat.2020.119462.]
13. V. Cherkassky and F. M. Mulier, Learning from data: concepts, theory, and methods. John Wiley & Sons, 2007. [
DOI:10.1002/9780470140529]
14. K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.
15. W. Z. Taffese and E. Sistonen, (2017), Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions, Automation in Construction, vol. 77, pp. 1-14,
https://doi.org/10.1016/j.autcon.2017.01.016 [
DOI:10.1016/j.autcon.2017.01.016.]
16. H.-T. Thai, (2022), Machine learning for structural engineering: A state-of-the-art review, Structures, vol. 38, pp. 448-491,
https://doi.org/10.1016/j.istruc.2022.02.003 [
DOI:10.1016/j.istruc.2022.02.003.]
17. P. Pattnaik, A. Sharma, M. Choudhary, V. Singh, P. Agarwal, and V. Kukshal, (2021), Role of machine learning in the field of Fiber reinforced polymer composites: A preliminary discussion, Materials Today: Proceedings, vol. 44, pp. 4703-4708,
https://doi.org/10.1016/j.matpr.2020.11.026 [
DOI:10.1016/j.matpr.2020.11.026.]
18. M. Iqbal, Q. Zhao, D. Zhang, F. E. Jalal, and A. Jamal, (2021), Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models, Materials and Structures, vol. 54, no. 5, p. 190, 10.1617/s11527-021-01783-x. [
DOI:10.1617/s11527-021-01783-x]
19. Y. Kim and H. Oh, "Comparison between Multiple Regression Analysis, Polynomial Regression Analysis, and an Artificial Neural Network for Tensile Strength Prediction of BFRP and GFRP," Materials, vol. 14, no. 17, doi: 10.3390/ma14174861. [
DOI:10.3390/ma14174861] [
PMID] [
]
20. M. Iqbal, D. Zhang, and F. E. Jalal, (2022), Durability evaluation of GFRP rebars in harsh alkaline environment using optimized tree-based random forest model, Journal of Ocean Engineering and Science, vol. 7, no. 6, pp. 596-606,
https://doi.org/10.1016/j.joes.2021.10.012 [
DOI:10.1016/j.joes.2021.10.012.]
21. X. Liu, T. Liu, and P. Feng, (2022), Long-term performance prediction framework based on XGBoost decision tree for pultruded FRP composites exposed to water, humidity and alkaline solution, Composite Structures, vol. 284, p. 115184,
https://doi.org/10.1016/j.compstruct.2022.115184 [
DOI:10.1016/j.compstruct.2022.115184.]
22. M. Iqbal, K. Elbaz, D. Zhang, L. Hu, and F. E. Jalal, (2023), Prediction of residual tensile strength of glass fiber reinforced polymer bars in harsh alkaline concrete environment using fuzzy metaheuristic models, Journal of Ocean Engineering and Science, vol. 8, no. 5, pp. 546-558,
https://doi.org/10.1016/j.joes.2022.03.011 [
DOI:10.1016/j.joes.2022.03.011.]