پیام خود را بنویسید

XML English Abstract Print


1- دانشکده مکانیک، دانشگاه صنعتی شیراز
2- استاد مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی شیراز
چکیده:   (78 مشاهده)
شناورهای با بدنه سرشی قابلیت رسیدن به سرعت­های بالایی را دارند و به همین دلیل در مطالعات دریایی بسیار مورد توجه هستند. دریامانی در واقع علم بررسی حرکات شناورها در دریاها و اقیانوس­های مواج، و تاثیر امواج بر جنبه­های مختلف وابسته به شناور می‌باشد. در این تحقیق به بررسی عددی عملکرد دریامانی یک شناور سرشی نوع DTMB 1-4667  در امواج منظم دریایی با تمرکز بر دو درجه آزادی حرکات هیو و پیچ  پرداخته می شود. در این مطالعه،  جریان تراکم‌ناپذیر و آشفته فرض شده است و اثرات امواج منظم با استفاده از مدل‌سازی دو فازی آب و هوا بررسی شده است. برای تحلیل ، از نرم‌افزار ANSYS Fluent  جهت حل معادلات RANS استفاده شده است. در این تحلیل جهت مدل سازی جریان آشفته از مدل  k-ω SST استفاده شده و سطح آزاد آب با روش حجم سیال ردیابی شده است. شرایط مرزی و شبکه‌بندی با دقت تنظیم شده و تحلیل حساسیت به شبکه و اعتبارسنجی نتایج با داده‌های آزمایشگاهی انجام شده است و تفاوت در نیروی پسا در بیشترین حالت حدود 8% می‌باشد. نتایج نشان می‌دهد که افزایش سرعت شناور و ورود آن به فاز سرشی منجر به کاهش عملگرهای پاسخ دامنه (RAO) حرکات هیو و پیچ و در نتیجه بهبود عملکرد دریامانی می‌شود، هرچند نیروی پسا و دامنه حرکات به‌طور نسبی افزایش می‌یابد. همچنین مشخص شد که افزایش ارتفاع و طول موج موجب افزایش دامنه حرکات و شتاب کوبشی می‌شود؛ با این حال، بیشینه شتاب عمودی در بدترین حالت برابر با 6/2g  ثبت شد که کمتر از حد مجاز 4g  برای شناورهای پرسرعت است. دستاورد اصلی این پژوهش تلفیق تحلیل دقیق عددی، بررسی پارامترهای متنوع هیدرودینامیکی (از جمله فرکانس برخورد) و ارائه ارزیابی کمی دقیق از پاسخ دینامیکی شناور در شرایط مختلف دریایی است که می‌تواند در بهینه‌سازی طراحی بدنه شناورهای تندرو و افزایش ایمنی و راحتی آن‌ها نقش مؤثری ایفا کند.
متن کامل [PDF 1989 kb]   (29 دریافت)    

نکات برجسته:
  1. بررسی دریامانی یک نوع بدنه شناور سرشی در امواج منظم
  2. افزایش ارتفاع و طول موج موجب افزایش دامنه حرکات و شتاب کوبشی می‌شود
  3. بیشینه شتاب عمودی در بدترین حالت برابر با 2.6 g  ثبت شد که کمتر از حد مجاز 4g  برای شناورهای پرسرعت است
  4. با افزایش ارتفاع موج مشاهده می‌شود که مقادیر متوسط نیروی پسآ، مقادیر متوسط حرکت هیو و پیچ نیز افزایش می یابند.
  5. با افزایش نسبت طول موج به طول بدنه  در فاز جابجایی متوسط نیروی پسآ کاهش یافته است ولی در فاز سرشی متوسط نیروی پسآ افزایش داشته است

نوع مطالعه: مقاله پژوهشي | موضوع مقاله: هیدرودینامیک عددی
دریافت: 1403/12/13 | پذیرش: 1404/5/19

فهرست منابع
1. Moonesun, M., 2012, Handbook of naval architecture, Research center publications, Tehran (In Persian)
2. Cakici, F., Yildiz, B. and Alkan, A. D., (2015), Crew Comfort investigation for vertical and lateral responses of a container ship, International Conference on the Stability of Ships and Ocean Vehicles, Glasgow, UK
3. Tupper, E. C., (2004), Introduction to Naval Architecture, Oxford: Elsevier. [DOI:10.1016/B978-075066554-4/50002-1]
4. Clement, E.P., Blount, D.L., (1963), Resistance Tests of a Systematic Series of Planing Hull Forms, The Society of Naval Architects and Marine Engineers, p.491-579.
5. Fridsma, G., (1969), A Systematic Study of the Rough-Water Performance of Planing Boats, Davidson Laboratory, Report 511-DL-71-1495 [DOI:10.21236/AD0708694]
6. Savitsky, D., and Brown, P. W., (1976). Procedures for Hydrodynamic Evaluation of Planing Hulls in Smooth and Rough Water, Marine Technology, Vol. 13, p.381-400. DOI:10.5957/mtl.1976.13.4.381 [DOI:10.5957/mt1.1976.13.4.381]
7. Kukner, A., and Sarioz, A., (1995). High speed hull form optimisation for seakeeping, Advanced in Engineering Software, Vol. 22. p.179-189. [DOI:10.1016/0965-9978(95)00016-P]
8. Khosravi Babadi, M., and Ghassemi, H., (2013), Effect of hull form coefficients on the vessel seakeeping Performance, Marine Science and Technology, Vol.21, p.594-604. DOI:10.6119/JMST-013-0117-2
9. Kim, D. J., Kim, S. Y., You, Y. J., Rhee, K. P., Kim, S. H., and Kim, Y. G., (2013). Design of High-Speed Planing Hulls for The Improvement of Resistance and Seakeeping Performance, Naval Architects and Ocean Engineers, Vol. 5, p.161-177. [DOI:10.2478/IJNAOE-2013-0124]
10. Ma, W., Hanbing Sun, D., Jin Zou, D., and Zhuang J., (2015), Test Studies of the Resistance and Seakeeping Performance of a Trimaran Planing Hull, Polish, Maritime Research, Vol. 22, p.22-27. DOI:10.1515/pomr-2015-0004 [DOI:10.1515/pomr-2015-0004]
11. De Marco, A., Mancini, S., Miranda, S., Scognarniglio, R., and Vitiello, L., (2017), Experimental and Numerical Hydrodynamic Analysis of a Stepped Planing Hull, Applied Ocean Research, Vol.64, p.135- 154. [DOI:10.1016/j.apor.2017.02.004]
12. Cucinotta, F., Guglielmino, E., and Sfravara, F., (2017), An Experimental Comparison between Different Artificial Air Cavity Designs for a Planing Hull, Ocean Engineering, Vol. 140, p.233-243. [DOI:10.1016/j.oceaneng.2017.05.028]
13. l3- Pirayesh, S., Nikseresht, A.H., and Zainali,H., (2011), Experimental investigation of added resistance on NACA 4667-1 planing Hull in head sea waves, MIC2017, Kish Island, (In Persian)
14. Yao, C.B., Sun, X. S., Wang, W., and Ye. Q., (2017). Seakeeping Performance of Ship in Finite Water Depth, Applied Ocean Research, Vol.67, p.59-77. [DOI:10.1016/j.apor.2017.06.005]
15. l5- Jiao, J., Sun, S., Li, j., Adenya, C. A., Ren, H., Chen, C., and Wang, D., (2018), A Comprehensive Study on the Seakeeping Performance of High speed Hybrid Ships by 2.5D Theoretical Calculation and Different Scaled Model Experiments, Ocean Engineering, Vol. 60, p.197-223. [DOI:10.1016/j.oceaneng.2018.04.051]
16. Faltinsen, O. M., and Sun, H., (2007), The Influence of Gravity on the Performance of Planing Vessels in Calm Water, Engineering Mathematics, Vol. 58, p.91-107. [DOI:10.1007/s10665-006-9107-5]
17. Ozum, S., Sener, B., and Yilmaz, H., (2011), A Parametric Study On Seakeeping Assessment of Fast Ships in Conceptual Design Stage, Ocean Engineering, Vol. 38, p.1439-1447. [DOI:10.1016/j.oceaneng.2011.07.005]
18. Castiglione, T., Stern, F., Bova, S., and Kandasamy, M., (2011), Numerical Investigation of the Seakeeping Behavior of a Catamaran Advancing in Regular Head Waves, Ocean Engineering, Vol. 38, p.1806-1822. [DOI:10.1016/j.oceaneng.2011.09.003]
19. Wang, S., Su, Y., Zhang, X., and, Yang, J., (2012), RANSE Simulation of High-speed Planing Craft in Regular Waves, Marine Science Application, Vol. 11, p.447-452. [DOI:10.1007/s11804-012-1154-x]
20. Shen, Z., and Wan, D., (2013), RANS Computations of Added Resistance and Motions of a Ship in Head Waves, Offshore and Polar Engineering, Vol.23, p.263-271. ISOPE-13-23-4-263
21. 2l- Mousaviraad, S.M., Wang, Z., and Stern, F., (2015), URANS Studies of Hydrodynamic Performance and Slamming Loads on high-speed Planing Hulls in Calm Water and Waves for Deep and Shallow Conditions, Applied Ocean Research, Vol. 51, P.222-240. [DOI:10.1016/j.apor.2015.04.007]
22. Kim, M., Hizir, O., Turan, O., and Incecik, A., (2017), Numerical Studies On Added Resistance and Motions of KVLCC2 in Head Seas for Various Ship Speeds, Ocean Engineering, Vol.140, p.466-476. [DOI:10.1016/j.oceaneng.2017.06.019]
23. Masumi, Y., and Nikseresht, A.H., (2017), Comparison of Numerical Solution and Semi-Empirical Formulas to Predict the Effects of Important Design Parameters on Porpoising Region of a Planing Vessel, Applied Ocean Research, Vol. 68, p.228-236. [DOI:10.1016/j.apor.2017.09.002]
24. Taghva, H.R., Ghassemi, H., and Nowruzi, H., (20 18), Seakeeping Performance Estimation of Container Ship under Irregular Wave Condition Using Artificial Neural Network, Civil Engineering and Architecture, Vol.6, p.147 -153. DOI: 10.12691/ajcea-6-4-3 [DOI:10.12691/ajcea-6-4-3]
25. Safari, A., and Nikseresht, A.H., (2018), Numerical investigation of added resistance and wave pattern on a Planing Vessel in Regular head Waves, International Journal of Engineering System and Modeling and Simulation, Vol. 10, No.3, p.169-178. [DOI:10.1504/IJESMS.2018.094085]
26. Masumi, Y., and Nikseresht, A.H., (2019), 2DOF numerical investigation of a planing vessel in head sea waves in deep and shallow water conditions. Applied Ocean Research, Vol. 82, p.41-51. [DOI:10.1016/j.apor.2018.10.017]
27. Xiaosheng, Bi, Jiayuan, Zh., and Yumin, Su, (2020), Seakeeping Analysis of Planing Craft under Large Wave Height,Water, 12 (4), [DOI:10.3390/w12041020]
28. Salvatore. C., Bonaventura. T., Simone. M., Iván. M.E., Corrado. A., José. M.D., and Giacomo. V., (2023), Regular Wave Seakeeping Analysis of a Planing Hull by Smoothed Particle Hydrodynamics: A Comprehensive Validation, J. Mar. Sci. Eng., 11(4), [DOI:10.3390/jmse11040700]
29. Seol, N., Jong-Chun, P., Jun-Bum, P., and Hyeon, K.Y., (2024), Numerical Simulation of Seakeeping Performance of a Barge Using Computational Fluid Dynamics (CFD)-Modified Potential (CMP) Model, J. Mar. Sci. Eng., 12(3), [DOI:10.3390/jmse12030369]
30. Khosravi Babadi, M., and Ghasemi, H., (2024), Optimization of ship hull forms by changing CM and CB coefficients to obtain optimal seakeeping performance, Plos one 19, e0302054. [DOI:10.1371/journal.pone.0302054] [PMID] []
31. Perez, T., (2006), Ship Motion Control: Course Keeping and Roll Stabilisation Using Rudder and Fins, Springer, London.

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.