پیام خود را بنویسید
دوره 20، شماره 44 - ( 7-1403 )                   جلد 20 شماره 44 صفحات 125-109 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yari E. Numerical analysis of the effect of geometric pitch on the radiated noise level of high skew propeller. Marine Engineering 2024; 20 (44) :109-125
URL: http://marine-eng.ir/article-1-1018-fa.html
یاری احسان. تحلیل عددی تاثیر گام هندسی بر سطح نویز انتشاری پروانه اسکیو بالا. مهندسی دریا. 1403; 20 (44) :109-125

URL: http://marine-eng.ir/article-1-1018-fa.html


دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مکانیک
چکیده:   (545 مشاهده)
هدف از این مقاله تحلیل عددی هیدروآکوستیکی نویز انتشاری غیرکاویتاسیونی پروانه اسکیو بالا در گام های هندسی مختلف با استفاده از روش دینامیک سیالات محاسباتی می باشد. گام هندسی پروانه از جمله مهمترین پارامترهای تاثیرگذار در طراحی پروانه های دریایی می باشد، لذا در این مقاله از یک نمونه سری استاندارد پروانه زیرسطحی با تعداد پره های مختلف و در گام های هندسی متفاوت استفاده شده است و داده های مربوط به میدان ورتیسیتی و سطح نویز انتشاری استخراج و مورد مطالعه قرار گرفته است. در این تحلیل عددی از مدل اغتشاشی DES استفاده شده است که با تعداد شبکه متوسط در مقایسه با روش گردابه های بزرگ دارای جوابهای با دقت قابل قبول در حوزه نویز می باشد. به منظور افزایش دقت داده های عددی، شبکه تولید شده حول پروانه در نواحی لبه ابتدایی، لبه انتهایی و نوک پره ها و همچنین در ناحیه دنباله پایین دست جریان با تراکم بالاتری تولید شده است. بر اساس نتایج بدست آمده با افزایش زاویه گام هندسی پره پروانه میزان فشار استاتیکی بر روی سطح جلویی پره افزایش یافته و گردابه های ناشی از باس و هاب طولانی تر شده و میزان تغییرات سطح نویز انتشاری در راستای محوری در فرکانس های پایین کمتر از 5 دسیبل اما در فرکانس های بالا نوسانی بوده و تغییرات محسوس تر است. بیشترین میزان تغییرات سطح فشار صوت بر حسب گام در راستای عمود بر جهت جریان و تا حدود 40 دسیبل هم می رسد.
متن کامل [PDF 2768 kb]   (110 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: هیدرودینامیک عددی
دریافت: 1401/9/18 | پذیرش: 1403/11/15

فهرست منابع
1. H. Seol, B. Jung, J.-C. Suh, S. Lee, (2002), Prediction of non-cavitating underwater propeller noise, Journal of Sound and Vibration, 257: 131-156. [DOI:10.1006/jsvi.2002.5035]
2. C. Park, H. Seol, K. Kim, and W. Seong, "A study on propeller noise source localization in a cavitation tunnel ", Ocean Engineering, vol. 36, no. 9, pp. 754-762, 2009. [DOI:10.1016/j.oceaneng.2009.04.005]
3. E. Korkut and M. Atlar, "An Experimental Study into the effect of foul release coating on the efficiency, noise and cavitation characteristics of a propeller," in First International Symposium on Marine Propulsors, 2009, pp. 285-293: Trondheim.
4. L. Jeung-Hoon, H. Jae-Moon, P. Hyung-Gil, and S. Jong-Soo, "Application of signal processing techniques to the detection of tip vortex cavitation noise in marine propeller," Journal of Hydrodynamics, Ser. B, vol. 25, no. 3, pp. 440-449, 2013. [DOI:10.1016/S1001-6058(11)60383-2]
5. B. Aktas, M. Atlar, S. Turkmen, E. Korkut, and P. Fitzsimmons, "Systematic cavitation tunnel tests of a Propeller in uniform and inclined flow conditions as part of a round robin test campaign," Ocean Engineering, vol. 120, pp. 136. 17,10 [DOI:10.1016/j.oceaneng.2015.12.015]
6. S. Kim, Y. Niu, Y.-J. Kim, (2013), Computational aero-acoustic modeling of open fan and comparison of predicted and experimental noise fields, INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Vol. 246, Institute of Noise Control Engineering, pp. 970-977.
7. J.-S. Jang, H.-T. Kim, W.-H. Joo, (2014), Numerical study on non-cavitating noise of marine propeller, INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Vol. 249, Institute of Noise Control Engineering, pp. 3017-3022.
8. S. Zeng, X. Du, (2015), Numerical simulation and analysis of non-cavitation noise line-spectrum frequency of underwater counter-rotation propeller, International Industrial Informatics and Computer Engineering Conference, Atlantis Press. [DOI:10.2991/iiicec-15.2015.371]
9. B. Aktas, M. Atlar, S. Turkmen, W. Shi, R. Sampson, E. Korkut, P. Fitzsimmons, (2016), Propeller cavitation noise investigations of a research vessel using medium size cavitation tunnel tests and full-scale trials, Ocean Engineering, 120: 122-135. [DOI:10.1016/j.oceaneng.2015.12.040]
10. A. Brooker, V. Humphrey, (2016), Measurement of radiated underwater noise from a small research vessel in shallow water, Ocean Engineering, 120: 182-189. [DOI:10.1016/j.oceaneng.2015.09.048]
11. T. Kim, J. Jeon, S. Chu, S. Kim, W. Joo, (2016), Numerical and experimental predictions of underwater propeller radiated noise, Proceedings of Meetings on Acoustics 22ICA, Vol. 28, ASA, pp. 070004. [DOI:10.1121/2.0000430]
12. H. Haimov, V. Gallego, E. Molinelli, B. Trujillo, (2016), Propeller acoustic measurements in atmospheric towing tank, Ocean Engineering, 120: 190-201. [DOI:10.1016/j.oceaneng.2015.06.047]
13. G. Tani, D. Villa, S. Gaggero, M. Viviani, P. Ausonio, P. Travi, G. Bizzarri, F. Serra, (2017), Experimental investigation of pressure pulses and radiated noise for two alternative designs of the propeller of a high-speed craft, Ocean Engineering, 132: 45-69. [DOI:10.1016/j.oceaneng.2017.01.015]
14. J. Park, W. Seong, (2017), Novel scaling law for estimating propeller tip vortex cavitation noise from model experiment, Journal of Hydrodynamics, 29: 962-971. [DOI:10.1016/S1001-6058(16)60810-7]
15. B. Aktas, M. Atlar, P. Fitzsimmons, W. Shi, (2018), An advanced joint time-frequency analysis procedure to study cavitation-induced noise by using standard series propeller data, Ocean Engineering, 170: 329-350. [DOI:10.1016/j.oceaneng.2018.10.026]
16. M.J. Lighthill, (1952), On sound generated aerodynamically. I. General theory, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 211: 564-587. [DOI:10.1098/rspa.1952.0060]
17. M.C. Özden, A.Y. Gürkan, Y.A. Özden, T.G. Canyurt, E. Korkut, (2016), Underwater radiated noise prediction for a submarine propeller in different flow conditions, Ocean Engineering, 126: 488-500. [DOI:10.1016/j.oceaneng.2016.06.012]
18. Y. Wei, Y. Shen, S. Jin, P. Hu, R. Lan, S. Zhuang, D. Liu, (2016), Scattering effect of submarine hull on propeller non-cavitation noise, Journal of Sound and Vibration, 370: 319-335. [DOI:10.1016/j.jsv.2016.01.027]
19. S. Sezen, A. Dogrul, S. Bal, (2016), Investigation of marine propeller noise for steady and transient flow, PROCEEDINGS BOOK, 149.
20. M.R. Naseer, E. Uddin, K. Rana, S. Zahir, (2017), Computational validation of hydrodynamic and hydro-acoustic performance of marine propeller, 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), IEEE, pp. 569-574. [DOI:10.1109/IBCAST.2017.7868108]
21. H. Ghassemi, M. Gorji, J. Mohammadi, (2018), Effect of tip rake angle on the hydrodynamic characteristics and sound pressure level around the marine propeller, Ships and Offshore Structures, 13: 759-768. [DOI:10.1080/17445302.2018.1457207]
22. M.S.U. Khalid, I. Akhtar, B. Wu, (2019), Quantification of flow noise produced by an oscillating hydrofoil, Ocean Engineering, 171: 377-390. [DOI:10.1016/j.oceaneng.2018.11.024]
23. B. Zhang, Y. Xiang, P. He, G.-j. Zhang, (2019), Study on prediction methods and characteristics of ship underwater radiated noise within full frequency, Ocean Engineering, 174: 61-70. [DOI:10.1016/j.oceaneng.2019.01.028]
24. Jie Dang, Do Ligtelijn, (2019) "Development of Tunnel Thruster Series Propellers for Low Noise and Vibration" Sixth International Symposium on Marine Propulsors.
25. Vladimir Krasilnikov, Luca Savio, Kourosh Koushan, Mario Felli, Moustafa Abdel-Maksoud, (2022), "Towards Reliable Prediction of Propeller Noise: Challenges and Findings of the Project ProNoVi", 7th International Symposium of Marine Propulsors. [26] Jeong-yong Park, Hyoungsuk Lee, Sooyeong Park, Hanshin Seol, Hongseok Jeong, (2022) "Case study on the propeller design for the commercial vessel in consideration of underwater radiated noise and propulsive efficiency", 7th International Symposium of Marine Propulsors. [27] M. Kaltenbacher, (2018), Computational Acoustics, Springer.
26. R. Kotapati-Apparao, K.D. Squires, J.R. Forsythe, (2004), Prediction of the Flow over an Airfoil at Maximum Lift, 42nd AIAA Aerospace Sciences Meeting and Exhibit.
27. R.B. Kotapati-Apparao, K.D. Squires, J.R. Forsythe, (2003), Prediction of a prolate spheroid undergoing apitchup maneuver, IN AIAA PAPER 2003-0269 41 ST AEROSPACE SCIENCES MEETING AND EXHIBIT, Citeseer.
28. Ehsan Yari, Hassan Ghassemi, (2013), Numerical analysis of sheet cavitation on marine propellers, considering the effect of cross flow, International Journal of Naval Architecture and Ocean Engineering, 5: 546-558. [DOI:10.2478/IJNAOE-2013-0152]
29. H. Seol, J.-C. Suh, S. Lee, (2005), Development of hybrid method for the prediction of underwater propeller noise, Journal of Sound and Vibration, 288: 345-360. [DOI:10.1016/j.jsv.2005.01.015]
30. Roache, P. J., (1997) Quantification of uncertainty in computational fluid dynamics. Annual review of fluid Mechanics, 29, 123-160. [DOI:10.1146/annurev.fluid.29.1.123]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.