Write your message
Volume 16, Issue 31 (4-2020)                   marine-engineering 2020, 16(31): 83-94 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sarlak N, Yousefzadeh S, Nasrollah Barati A. Experimental Study of Tensile Strength in Composite Floats Structure Repaired with Multi-Layer Patches. marine-engineering. 2020; 16 (31) :83-94
URL: http://marine-eng.ir/article-1-723-en.html
1- Islamic Azad University, Aligudarz Branch
Abstract:   (517 Views)
Repair of cracked composite structural components and plates according to repair standards is increased year on year. Patched repair reduces the stress field near the crack by bridging the stresses between the cracked plate and the composite patch, leads to retardation or complete stoppage of the crack growth, provides high structural efficiency and extends the life of cracked structural components at an economical cost. This study is investigated the repair process of the cracked float composite structures through the experiments. At first, composite specimens are constructed similar to the composite body of a marine float, and after done damage on it, they were repaired by multi-layer patches. Then, the tension test was done on samples and the effect of some parameters on tensile strength was studied. These parameters are bonded angle, resin type, fiber type, lay-up techniques, the percentage of resin compound and hardener. Finally, the results of tests showed that the bonded angel and lay-up techniques are the most important parameters on tensile strength in repaired composite components.
Full-Text [PDF 797 kb]   (146 Downloads)    
Type of Study: Research Paper | Subject: Ship Structure
Received: 2019/04/13 | Accepted: 2020/04/27

1. [1] Sinmazçelik, T., Avcu, E., Bora, M. Ö., & Çoban, O. (2011). A review: Fiber metal laminates, background, bonding types and applied test methods, Materials & Design, Vol. 32, p.3671-3685. [DOI:10.1016/j.matdes.2011.03.011]
2. [2] Hu, F. Z., and Soutis, C. (1997), Strength prediction and design optimization for external patch repairs in composite structures. In International conference on deformation and fracture of composites, p.609-618.
3. [3] Avram, J. B. (2001). Fatigue response of thin stiffened aluminum cracked panels repaired with bonded composite patches (No. afit/gms/eny/01m-01). air force inst of tech wright-patterson afb oh school of engineering and management.
4. [4] E. W. Therall, (1979), Failure in Adhesively Bonded Structures, Bonded Joints and Preparation for Bonding, AGARD-CP-102.
5. [5] Baker, A. A., Rose, L. F., & Jones, R. (Eds.). (2003). Advances in the bonded composite repair of a metallic aircraft structure. Elsevier.
6. [6] Denney, J. J. (1995). Fatigue Response of Cracked Aluminum Panel With Partially Bonded Composite Patch (No. AFIT/GAE/ENY/95D-7). AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH. [DOI:10.2514/6.1996-1322]
7. [7] Campilho, R. D., De Moura, M. F. S. F., & Domingues, J. J. M. S. (2005). Modelling single and double-lap repairs on composite materials. Composites Science and Technology, 65(13), 1948-1958. [DOI:10.1016/j.compscitech.2005.04.007]
8. [8] Hosseini-Toudeshky, H., Mohammadi, B., & Daghyani, H. R. (2006). Mixed-mode fracture analysis of aluminium repaired panels using composite patches. Composites Science and Technology, 66(2), 188-198. [DOI:10.1016/j.compscitech.2005.04.028]
9. [9] Hosseini-Toudeshky, H., Bakhshandeh, S., Mohammadi, B., & Daghyani, H. R. (2006). Experimental investigations on fatigue crack growth of repaired thick aluminum panels in mixed-mode conditions. Composite Structures, 75(1-4), 437-443. [DOI:10.1016/j.compstruct.2006.04.021]
10. [10] Hosseini-Toudeshky, H., & Mohammadi, B. (2009). Mixed-mode numerical and experimental fatigue crack growth analyses of thick aluminum panels repaired with composite patches. Composite Structures, 91(1), 1-8. [DOI:10.1016/j.compstruct.2009.04.022]
11. [11] Hosseini-Toudeshky, H., Saber, M., & Mohammadi, B. (2009). Finite element crack propagation of adhesively bonded repaired panels in general mixed-mode conditions. Finite Elements in Analysis and Design, 45(2), 94-103. [DOI:10.1016/j.finel.2008.07.010]
12. [12] Khalili, S. M. R., Ghadjar, R., Sadeghinia, M., & Mittal, R. K. (2009). An experimental study on the Charpy impact response of cracked aluminum plates repaired with GFRP or CFRP composite patches. Composite Structures, 89(2), 270-274. [DOI:10.1016/j.compstruct.2008.07.032]
13. [13] Okafor, A. C., Singh, N., Enemuoh, U. E., & Rao, S. V. (2005). Design, analysis and performance of adhesively bonded composite patch repair of cracked aluminum aircraft panels. Composite structures, 71(2), 258-270. [DOI:10.1016/j.compstruct.2005.02.023]
14. [14] Chue, C. H., & Liu, T. J. C. (1995). The effects of laminated composite patch with different stacking sequences on bonded repair. Composites engineering, 5(2), 223-230. [DOI:10.1016/0961-9526(95)90715-N]
15. [15] Jones, R., Callinan, R. J., & Aggarwal, K. C. (1983). Analysis of bonded repairs to damaged fibre composite structures. Engineering Fracture Mechanics, 17(1), 37-46. [DOI:10.1016/0013-7944(83)90021-8]
16. [16] Xiong, J. J., & Shenoi, R. A. (2008). Integrated experimental screening of bonded composites patch repair schemes to notched aluminum-alloy panels based on static and fatigue strength concepts. Composite Structures, 83(3), 266-272. [DOI:10.1016/j.compstruct.2007.04.019]
17. [17] Sun, C. T., Klug, J., & Arendt, C. (1996). Analysis of cracked aluminum plates repaired with bonded composite patches. AIAA journal, 34(2), 369-374. [DOI:10.2514/3.13073]
18. [18] Naboulsi, S., & Mall, S. (1997). Fatigue crack growth analysis of adhesively repaired panel using perfectly and imperfectly composite patches. Theoretical and applied fracture mechanics, 28(1), 13-28. [DOI:10.1016/S0167-8442(97)00027-X]
19. [19] Sabelkin, V., Mall, S., & Avram, J. B. (2006). Fatigue crack growth analysis of stiffened cracked panel repaired with bonded composite patch. Engineering Fracture Mechanics, 73(11), 1553-1567. [DOI:10.1016/j.engfracmech.2006.01.029]
20. [20] Naboulsi, S., & Mall, S. (1998). Nonlinear analysis of bonded composite patch repair of cracked aluminum panels. Composite Structures, 41(3-4), 303-313. [DOI:10.1016/S0263-8223(98)00052-X]
21. [21] Schubbe, J. J. (1997). Thickness effects on a cracked aluminum plate with composite patch repair. AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH.
22. [22] Conley, D. S. (1999). Fatigue response of repaired thick aluminum panels with bond-line flaws (No. AFIT/GAE/ENY/99M-03). AIR FORCE INST OF TECH WRIGHT-PATTERSONAFB OH.
23. [23] Bouiadjra, B. B., Belhouari, M., & Serier, B. (2002). Computation of the stress intensity factors for repaired cracks with bonded composite patch in mode I and mixed mode. Composite Structures, 56(4), 401-406. [DOI:10.1016/S0263-8223(02)00023-5]
24. [24] Chang, P. Y., Yeh, P. C., & Yang, J. M. (2008). Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates. Materials Science and Engineering: A, 496(1-2), 273-280. [DOI:10.1016/j.msea.2008.07.041]
25. [25] Vogelesang, L. B., & Vlot, A. (2000). Development of fibre metal laminates for advanced aerospace structures. Journal of Materials Processing Technology, 103(1), 1-5. [DOI:10.1016/S0924-0136(00)00411-8]
26. [26] Vogelesang, L. B., Schijve, J., & Fredell, R. (1995). Fibre-metal laminates: damage tolerant aerospace materials. Paper in: Case studies in manufacturing with advanced materials. Vol. 2 (A. Demaid and JHW de Wit, Eds).
27. [27] Vogelesang, L. B., & Vlot, A. (2000). Development of fibre metal laminates for advanced aerospace structures. Journal of Materials Processing Technology, 103(1), 1-5. [DOI:10.1016/S0924-0136(00)00411-8]
28. [28] Alderliesten, R., Rans, C., & Benedictus, R. (2008). The applicability of magnesium based fibre metal laminates in aerospace structures. Composites Science and Technology, 68(14), 2983-2993. [DOI:10.1016/j.compscitech.2008.06.017]
29. [29] F. Ashenai Ghasemi, Gh. Bagheri, A. Pourkamali Anaraki, Experimental analysis of tensile strength of lateral notched aluminum plates reinforced by the Fiber metal laminate (FML) patches, Modares Mechanical Engineering Vol. 15, No. 3, pp. 1-8, 2015 (In Persian)
30. [30] Sh. Yousefzadeh, M.M. Doostdar, Experimental investigation of fatigue life in cracked Aluminum plates repaired by composites patches, Sharif Mechanical Engineering, Vol. 33, No. 2, pp. 123-132, 2017 (In Persian)
31. [31] Czichos, H., & Saito, T. (2006). Springer handbook of materials measurement methods (Vol. 978). L. Smith (Ed.). Berlin: Springer. [DOI:10.1007/978-3-540-30300-8]

Send email to the article author

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.