1. [1] G. E. Halkos and E. C. Gkampoura, "Reviewing usage, potentials, and limitations of renewable energy sources," Energies, vol. 13, no. 11, 2020, doi: 10.3390/en13112906. [
DOI:10.3390/en13112906]
2. [2] T. Wilberforce, Z. El Hassan, A. Durrant, J. Thompson, B. Soudan, and A. G. Olabi, "Overview of ocean power technology," Energy, vol. 175, pp. 165-181, 2019, doi: 10.1016/j.energy.2019.03.068. [
DOI:10.1016/j.energy.2019.03.068]
3. [3] B. Drew, A. R. Plummer, and M. N. Sahinkaya, "A review of wave energy converter technology," Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 223, no. 8, pp. 887-902, 2009, doi: 10.1243/09576509JPE782. [
DOI:10.1243/09576509JPE782]
4. [4] S. Michele, E. Renzi, C. Perez-Collazo, D. Greaves, and G. Iglesias, "Power extraction in regular and random waves from an OWC in hybrid wind-wave energy systems," Ocean Eng., vol. 191, no. October, p. 106519, 2019, doi: 10.1016/j.oceaneng.2019.106519. [
DOI:10.1016/j.oceaneng.2019.106519]
5. [5] H. Osawa and T. Miyazaki, "Wave-PV hybrid generation system carried in the offshore floating type wave power device 'Mighty Whale,'" Ocean '04 - MTS/IEEE Techno-Ocean '04 Bridg. across Ocean. - Conf. Proc., vol. 4, pp. 1860-1866, 2004, doi: 10.1109/oceans.2004.1406427. [
DOI:10.1109/OCEANS.2004.1406427]
6. [6] M. D. Abnavi, N. Mohammadshafie, M. A. Rosen, A. Dabbaghian, and F. Fazelpour, "Techno-economic feasibility analysis of stand-alone hybrid wind/photovoltaic/diesel/battery system for the electrification of remote rural areas: Case study Persian Gulf Coast-Iran," Environ. Prog. Sustain. Energy, vol. 38, no. 5, pp. 1-15, 2019, doi: 10.1002/ep.13172. [
DOI:10.1002/ep.13172]
7. [7] S. Singh, M. Singh, and S. C. Kaushik, "Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system," Energy Convers. Manag., vol. 128, pp. 178-190, 2016, doi: 10.1016/j.enconman.2016.09.046. [
DOI:10.1016/j.enconman.2016.09.046]
8. [8] J. Ahmad et al., "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, vol. 148, pp. 208-234, 2018, doi: 10.1016/j.energy.2018.01.133. [
DOI:10.1016/j.energy.2018.01.133]
9. [9] T. Egeland-Eriksen, A. Hajizadeh, and S. Sartori, "Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives," Int. J. Hydrogen Energy, vol. 46, no. 63, pp. 31963-31983, 2021, doi: 10.1016/j.ijhydene.2021.06.218. [
DOI:10.1016/j.ijhydene.2021.06.218]
10. [10] H. HassanzadehFard, F. Tooryan, E. R. Collins, S. Jin, and B. Ramezani, "Design and optimum energy management of a hybrid renewable energy system based on efficient various hydrogen production," Int. J. Hydrogen Energy, vol. 45, no. 55, pp. 30113-30128, 2020, doi: 10.1016/j.ijhydene.2020.08.040. [
DOI:10.1016/j.ijhydene.2020.08.040]
11. [11] C. H. S. Moura, J. L. Silveira, and W. de Q. Lamas, "Dynamic production, storage, and use of renewable hydrogen: A technical-economic-environmental analysis in the public transport system in São Paulo state, Brazil," Int. J. Hydrogen Energy, vol. 45, no. 56, pp. 31585-31598, 2020, doi: 10.1016/j.ijhydene.2020.08.198. [
DOI:10.1016/j.ijhydene.2020.08.198]
12. [12] S. Peláez-Peláez, A. Colmenar-Santos, C. Pérez-Molina, A. E. Rosales, and E. Rosales-Asensio, "Techno-economic analysis of a heat and power combination system based on hybrid photovoltaic-fuel cell systems using hydrogen as an energy vector," Energy, vol. 224, 2021, doi: 10.1016/j.energy.2021.120110. [
DOI:10.1016/j.energy.2021.120110]
13. [13] M. A. Baseer, A. Alqahtani, and S. Rehman, "Techno-economic design and evaluation of hybrid energy systems for residential communities: Case study of Jubail industrial city," J. Clean. Prod., vol. 237, p. 117806, 2019, doi: 10.1016/j.jclepro.2019.117806. [
DOI:10.1016/j.jclepro.2019.117806]
14. [14] D. N. Luta and A. K. Raji, "Decision-making between a grid extension and a rural renewable off-grid system with hydrogen generation," Int. J. Hydrogen Energy, vol. 43, no. 20, pp. 9535-9548, 2018, doi: 10.1016/j.ijhydene.2018.04.032. [
DOI:10.1016/j.ijhydene.2018.04.032]
15. [15] S. Mandal, B. K. Das, and N. Hoque, "Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh," J. Clean. Prod., vol. 200, pp. 12-27, 2018, doi: 10.1016/j.jclepro.2018.07.257. [
DOI:10.1016/j.jclepro.2018.07.257]
16. [16] L. M. Halabi and S. Mekhilef, "Flexible hybrid renewable energy system design for a typical remote village located in tropical climate," J. Clean. Prod., vol. 177, pp. 908-924, 2018, doi: 10.1016/j.jclepro.2017.12.248. [
DOI:10.1016/j.jclepro.2017.12.248]
17. [17] M. Sameti and A. Kasaeian, "Developing a formula for optimum power of an inverted piston-in-cylinder wave engine," Int. J. Renew. Energy Res., vol. 4, no. 2, pp. 471-476, 2014, doi: 10.1234/ijrer.v4i2.1258.
18. [18] M. R. Akhtari and M. Baneshi, "Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer," Energy Convers. Manag., vol. 188, no. January, pp. 131-141, 2019, doi: 10.1016/j.enconman.2019.03.067. [
DOI:10.1016/j.enconman.2019.03.067]
19. [19] L. Tribioli and R. Cozzolino, "Techno-economic analysis of a stand-alone microgrid for a commercial building in eight different climate zones," Energy Convers. Manag., vol. 179, no. September 2018, pp. 58-71, 2019, doi: 10.1016/j.enconman.2018.10.061. [
DOI:10.1016/j.enconman.2018.10.061]
20. [20] S. Baek et al., "Optimal renewable power generation systems for Busan metropolitan city in South Korea," Renew. Energy, vol. 88, pp. 517-525, 2016, doi: 10.1016/j.renene.2015.11.058. [
DOI:10.1016/j.renene.2015.11.058]
21. [21] M. H. Jahangir, A. Shahsavari, and M. A. Vaziri Rad, "Feasibility study of a zero emission PV/Wind turbine/Wave energy converter hybrid system for stand-alone power supply: A case study," J. Clean. Prod., vol. 262, p. 121250, 2020, doi: 10.1016/j.jclepro.2020.121250. [
DOI:10.1016/j.jclepro.2020.121250]
22. [22] M. H. Jahangir, S. Fakouriyan, M. A. Vaziri Rad, and H. Dehghan, "Feasibility study of on/off grid large-scale PV/WT/WEC hybrid energy system in coastal cities: A case-based research," Renew. Energy, vol. 162, pp. 2075-2095, 2020, doi: 10.1016/j.renene.2020.09.131. [
DOI:10.1016/j.renene.2020.09.131]
23. [23] M. Gökçek and C. Kale, "Techno-economical evaluation of a hydrogen refuelling station powered by Wind-PV hybrid power system: A case study for İzmir-çeşme," Int. J. Hydrogen Energy, vol. 43, no. 23, pp. 10615-10625, 2018, doi: 10.1016/j.ijhydene.2018.01.082. [
DOI:10.1016/j.ijhydene.2018.01.082]
24. [24] S. Rahimi, M. Meratizaman, S. Monadizadeh, and M. Amidpour, "Techno-economic analysis of wind turbine-PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area," Energy, vol. 67, pp. 381-396, 2014, doi: 10.1016/j.energy.2014.01.072. [
DOI:10.1016/j.energy.2014.01.072]
25. [25] N. M. Isa, H. S. Das, C. W. Tan, A. H. M. Yatim, and K. Y. Lau, "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, vol. 112, pp. 75-90, 2016, doi: 10.1016/j.energy.2016.06.056. [
DOI:10.1016/j.energy.2016.06.056]
26. [26] D. N. Luta and A. K. Raji, "Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications," Energy, vol. 166, pp. 530-540, 2019, doi: 10.1016/j.energy.2018.10.070. [
DOI:10.1016/j.energy.2018.10.070]
27. [27] M. S. Javed, A. Song, and T. Ma, "Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm," Energy, vol. 176, pp. 704-717, 2019, doi: 10.1016/j.energy.2019.03.131. [
DOI:10.1016/j.energy.2019.03.131]
28. [28] A. Brka, Y. M. Al-Abdeli, and G. Kothapalli, "Predictive power management strategies for stand-alone hydrogen systems: Operational impact," Int. J. Hydrogen Energy, vol. 41, no. 16, pp. 6685-6698, 2016, doi: 10.1016/j.ijhydene.2016.03.085. [
DOI:10.1016/j.ijhydene.2016.03.085]
29. [29] H. Rezk et al., "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, vol. 175, pp. 423-433, 2019, doi: 10.1016/j.energy.2019.02.167. [
DOI:10.1016/j.energy.2019.02.167]
30. [30] R. Cozzolino, L. Tribioli, and G. Bella, "Power management of a hybrid renewable system for artificial islands: A case study," Energy, vol. 106, pp. 774-789, 2016, doi: 10.1016/j.energy.2015.12.118. [
DOI:10.1016/j.energy.2015.12.118]
31. [31] A. Singh, P. Baredar, and B. Gupta, "Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building," Energy Convers. Manag., vol. 145, pp. 398-414, 2017, doi: 10.1016/j.enconman.2017.05.014. [
DOI:10.1016/j.enconman.2017.05.014]
32. [32] C. Y. Tung and N. A. Saidina Amin, "Analysis of Carbon Dioxide Reforming of Methane via Thermodynamic Equilibrium Approach," J. Teknol., vol. 43, no. 1, pp. 30-49, 2005, doi: 10.11113/jt.v43.785. [
DOI:10.11113/jt.v43.785]