Write your message
Volume 16, Issue 31 (4-2020)                   Marine Engineering 2020, 16(31): 53-64 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Seyed Alipur S A, Siadatmousavi S M, Mahmoudof S M. Improving the Simulation of Depth-induced Breaking in the Third-Generation Wave Model SWAN. Marine Engineering 2020; 16 (31) :53-64
URL: http://marine-eng.ir/article-1-730-en.html
1- Iran University of Science and Technology
2- ranian National Institute for Oceanography and Atmospheric Science
Abstract:   (3542 Views)
In this study, the default wave breaking term in the SWAN numerical model and the depth-induced breaking term presented by Thornton and Guza (1983) were investigated. It was shown that by modifying the coefficients in the Thornton and Guza pattern, the simulation of waves in shallow water can be improved. To evaluate the model performance, several waves were generated in 3 depths, periods and heights in the laboratory. The corresponding condition were simulated by the SWAN numerical model, and the wave heights generated in the laboratory were compared with the model results. Two main calibration parameters in the Thornton and Guza model were tuned in different scenarios, and the improvement of SWAN in simulating the waves was assessed in each scenario. Finally, some formula for calibration parameters were proposed to be implemented in the SWAN numerical model, which resulted in a significant improvement in the calculation of depth-induced breaking of random waves.
Full-Text [PDF 1408 kb]   (1386 Downloads)    
Type of Study: Research Paper | Subject: Offshore Hydrodynamic
Received: 2019/05/4 | Accepted: 2020/04/6

References
1. Salmon, J. E., et al. "Scaling depth-induced wave-breaking in two-dimensional spectral wave models." Ocean Modelling 87 (2015): 30-47. [DOI:10.1016/j.ocemod.2014.12.011]
2. Apotsos, Alex, et al. "Testing and calibrating parametric wave transformation models on natural beaches." Coastal Engineering 55.3 (2008): 224-235. [DOI:10.1016/j.coastaleng.2007.10.002]
3. Bottema, Marcel, and Gerbrant Ph van Vledder. "A ten-year data set for fetch-and depth-limited wave growth." Coastal Engineering 56.7 (2009): 703-725. [DOI:10.1016/j.coastaleng.2009.01.012]
4. Katsardi, V. "Surface Water Waves in Intermediate and Shallow Water Depths (Ph. D. thesis)." Imperial College, London, 270p (2007).
5. Nelson, Raymond Charles. "Design wave heights on very mild slopes-an experimental study." Transactions of the Institution of Engineers, Australia. Civil engineering 29.3 (1987): 157-161.
6. van der Westhuysen, André J. "Modeling of depth‐induced wave breaking under finite depth wave growth conditions." Journal of Geophysical Research: Oceans 115.C1 (2010). [DOI:10.1029/2009JC005433]
7. Lin, Shangfei, and Jinyu Sheng. "Assessing the performance of wave breaking parameterizations in shallow waters in spectral wave models." Ocean Modelling 120 (2017): 41-59. [DOI:10.1016/j.ocemod.2017.10.009]
8. Camenen, B. and M. Larson, Predictive formulas for breaker depth index and breaker type. Journal of Coastal Research, 2007: p. 1028-1041. [DOI:10.2112/05-0566.1]
9. Young, I.R., Wind generated ocean waves. Vol. 2. 1999: Elsevier.
10. Booij, N., R.C. Ris, and L.H. Holthuijsen, A third‐generation wave model for coastal regions: 1. Model description and validation. Journal of geophysical research: Oceans, 1999. 104(C4): p. 7649-7666. [DOI:10.1029/98JC02622]
11. Battjes, Jurjen A., and J. P. F. M. Janssen. "Energy loss and set-up due to breaking of random waves." Coastal Engineering 1978. 1978. 569-587. [DOI:10.1061/9780872621909.034]
12. Battjes, J.A. and J. Janssen, Energy loss and set-up due to breaking of random waves, in Coastal Engineering 1978. 1978. p. 569-587. [DOI:10.1061/9780872621909.034]
13. Thornton, E.B. and R. Guza, Transformation of wave height distribution. Journal of Geophysical Research: Oceans, 1983. 88(C10): p. 5925-5938. [DOI:10.1029/JC088iC10p05925]
14. Horikawa, K., Nearshore dynamics and coastal processes: Theory, measurement, and predictive models. 1988: University of Tokyo press.
15. Goda, Yoshimi. "A synthesis of breaker indices." Proceedings of the Japan Society of Civil Engineers. Vol. 1970. No. 180. Japan Society of Civil Engineers, 1970. [DOI:10.2208/jscej1969.1970.180_39]
16. Van Rijn, L.C., Principles of fluid flow and surface waves in rivers, estuaries, seas and oceans. Vol. 12. 1990: Aqua Publications Amsterdam.
17. Weggel, R.J., Maximum breaker height. Journal of Waterways, Harbors & Coast Eng Div, 1972. 98(9384 Proceeding). [DOI:10.1061/9780872620490.024]
18. Rattanapitikon, Winyu, and Tomoya Shibayama. "Verification and modification of breaker height formulas." Coastal engineering journal 42.04 (2000): 389-406. [DOI:10.1142/S0578563400000195]
19. Smith, E.R. and N.C. Kraus, Laboratory study on macro-features of wave breaking over bars and artificial reefs. 1990, Coastal Engineering Research Center Vicksburg Ms. [DOI:10.21236/ADA225689]
20. Battjes, Jg A. "Surf similarity." Coastal Engineering 1974. 1975. 466-480. [DOI:10.1061/9780872621138.029]
21. Ostendorf, D.W. and O.S. Madsen, An analysis of longshore currents and associated sediment transport in the surf zone. 1979.
22. Singamsetti, S. and H. Wind, Characteristics of breaking and shoaling periodic waves normally incident on to plane beaches of constant slope. Report M1371, Delft Hydraulic Laboratory, Delft, The Netherlands, 1980: p. 142.
23. Miche, R., Mouvements ondulatoires de l'oce'an pour une eauprofonde constante et de'croissante. Annales des Ponts et Chausse'es, (mai-juin) 25-28, (juillet-aouˆt), 1944, 131-164, 270-292, 369-406
24. Kahma, K. K. and C. J.Calkoen. Reconciling Discrepancies in the Observed Growth of Wind-generated Waves, Journal of Physical Oceanography, 22.12 (1992): 1389-1405. https://doi.org/10.1175/1520-0485(1992)022<1389:RDITOG>2.0.CO;2 [DOI:10.1175/1520-0485(1992)0222.0.CO;2]
25. Mansard, E. P., and E. R. Funke. "The measurement of incident and reflected spectra using a least squares method." Coastal Engineering Proceedings 1, no. 17 (1980). [DOI:10.9753/icce.v17.8]
26. Baldock, T. E., and D. A. Huntley. "Long-wave forcing by the breaking of random gravity waves on a beach." Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458, no. 2025 (2002): 2177-2201. [DOI:10.1098/rspa.2002.0962]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.