دوره 18، شماره 37 - ( 12-1401 )                   جلد 18 شماره 37 صفحات 15-1 | برگشت به فهرست نسخه ها

XML English Abstract Print

1- دانشگاه شهرکرد
چکیده:   (525 مشاهده)
دیوارهای ساحلی یکی از روش­های حفاظت ساحل در مقابل فرسایش ساحلی و نیروهای مخرب امواج  است. هدف این پژوهش شبیه­سازی برخورد موج با دایک ساحلی و مقایسه نتایج با مدل آزمایشگاهی است. برای شبیه سازی میزان نیروی مستهلک شده ی موج توسط دایک ساحلی از نرم­ افزار متن ­باز Open FOAM و مدل آشفتگی K-ω SST استفاده شد. با در نظر گرفتن شرایط مختلف برای مدل­ سازی، مجموعاً تعداد 45 آزمایش جهت اجرای برنامه انتخاب شد. مدل­ سازی در دو شرایط کلی با سازه و بدون سازه و برای سه ارتفاع سازه، سه موقعیت متفاوت قرارگیری سازه و پنج ارتفاع موج انجام گردید. نتایج نشان داد که جذب نیروها نسبت به حالت بدون سازه افزایش پیدا کرده­اند و می­توان گفت که وجود سازه توانسته تا 10 برابر نسبت به حالت بدون سازه در استهلاک نیروی موج نقش داشته باشد. شدت تغییرات نیروی وارد به سازه تابعی از ارتفاع موج است و با افزایش میزان ارتفاع موج این شدت تاثیر گذاری کاهش می­یابد. تحت ارتفاع­های متفاوت موج هرچه سازه از مخزن ایجاد موج دورتر باشد میزان نیروی وارد به سازه کاهش می­یابد.
متن کامل [PDF 861 kb]   (108 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: سازه های ساحلی
دریافت: 1401/4/30 | پذیرش: 1401/8/4

فهرست منابع
1. Akgul, M Adil, Didem Yilmazer, Elif Oguz, M Sedat Kabdasli, and Oral Yagci, (2013), The Effect of an Emergent Vegetation (Ie Phragmistes Australis) on Wave Attenuation and Wave Kinematics. Journal of Coastal Research, no. 65 (10065): 147-52. [DOI:10.2112/SI65-026.1]
2. Zarei, M., Fathimoghadam, M., davoodi, L. (2017), Effect of coastal vegetation on attenuation of non-breaking solitary wave force in sloping coast lines, Irrigation and Water Engineering, 7(2), pp. 62-75. (in Persian)
3. Hashemi-Javan, S. (2007), Numerical simulation of wave breaking phenomenon on submerged breakwater, Master's thesis. Field of hydraulic structures. Faculty of Civil Engineering, Tehran. Tehran University of Science and Technology, 116 pages. (in Persian)
4. Effati, M. and Lashte-Neshaei, M.A., (2008), The effect of wave and earthquake forces on stone breakwaters. The 7th Iranian Hydraulic Conference. Tehran Iranian Hydraulic Association. University of Water and Electricity Industry. (in Persian)
5. Ghanbari_Adivi, E. and Fathi_Moghadam, M. (2015), Vegetation impact on the drag coefficient and resistance of trees against shore waves, Journal of Irrigation and Water Engineering, 2(38):103-112. (in Persian)
6. Igarashi, Yoshiya, Norio Tanaka, and Takehito Zaha. Changes in Flow Structures and Energy Reduction through Compound Tsunami Mitigation System with Embankment and Lined Piles." Ocean Engineering 164 (2018): 722-32. [DOI:10.1016/j.oceaneng.2018.07.003]
7. Honarmand, M., Arman, V., Zandi, S.M. and Shanehsazzade, A., (2018), Numerical and experimental simulation of tsunami wave propagation and upwelling and investigation of submerged breakwater performance in reducing upwelling, Journal of Oceanography, 9(36):31-38. (in Persian)
8. Elbisy, Moussa S, Ehab M Mlybari, and Medhat M Helal, (2016), Hydrodynamic Performance of Multiple-Row Slotted Breakwaters. Journal of Marine Science and Application 15, no. 2 (2016): 123-35. [DOI:10.1007/s11804-016-1358-6]
9. Jiang, Changbo, Xiaojian Liu, Yu Yao, Bin Deng, and Jie Chen (2017), Numerical Investigation of Tsunami-Like Solitary Wave Interaction with a Seawall." Journal of Earthquake and Tsunami 11, no. 01: 1740006. [DOI:10.1142/S1793431117400061]
10. Nassiraei, H. (2013), Numerical modeling of forces acting on caisson breakwaters from long waves, Master's thesis. Field of marine structures. Faculty of Civil and Environmental Engineering. Tarbiat Modares University. 74 pages. (in Persian)
11. Nassiraei, H., Heidarzadeh, M. and Shafieefar, M., 2016. Numerical Simulation of Long Waves (Tsunami) Forces on Caisson Breakwaters.
12. Lotfollahi-Yaghin, M.A. and Nassiraei, H., 2016. Numerical Simulation of Tsunami Waves Forces on Coastal Structures. Journal of Oceanography, 6(24), pp.23-30. (in Persian)
13. Jiang, Changbo, Xiaojian Liu, Yu Yao, and Bin Deng. Numerical Investigation of Solitary Wave Interaction with a Row of Vertical Slotted Piles on a Sloping Beach. International Journal of Naval Architecture and Ocean Engineering 11, no. 1 (2019): 530-41. [DOI:10.1016/j.ijnaoe.2018.09.007]
14. Li, Jinzhao, Meilan Qi, and David R Fuhrman. Numerical Modeling of Flow and Morphology Induced by a Solitary Wave on a Sloping Beach. Applied Ocean Research 82 (2019): 259-73. [DOI:10.1016/j.apor.2018.11.007]
15. Huang, Jianjun, and Guoping Chen. Experimental Modeling of Wave Load on a Pile-Supported Wharf with Pile Breakwater. Ocean Engineering 201 (2020): 107149. [DOI:10.1016/j.oceaneng.2020.107149]
16. Gonçalves, Sílvia C, Pedro M Anastácio, and João C Marques., (2013), Talitrid and Tylid Crustaceans Bioecology as a Tool to Monitor and Assess Sandy Beaches, Ecological Quality Condition." Ecological indicators 29 : 549-57. [DOI:10.1016/j.ecolind.2013.01.035]
17. Leewis, Lies, Peter M van Bodegom, Jelte Rozema, and Gerard M Janssen. (2012), Does Beach Nourishment Have Long-Term Effects on Intertidal Macroinvertebrate Species Abundance?. Estuarine, Coastal and Shelf Science 113 : 172-81. [DOI:10.1016/j.ecss.2012.07.021]
18. Martins, Mónica C, Carlos S Neto, and José C Costa., (2013), The Meaning of Mainland Portugal Beaches and Dunes' Psammophilic Plant Communities: A Contribution to Tourism Management and Nature Conservation. Journal of Coastal Conservation 17, no. 3 (2013): 279-99. [DOI:10.1007/s11852-013-0232-9]
19. Menter, Florian R. Influence of Freestream Values on K-Omega Turbulence Model Predictions. (1992), AIAA journal 30, no. 6: 1657-59. [DOI:10.2514/3.11115]
20. An, Karl, and J Chi Hung Fung. (2018), An Improved Sst K− Ω Model for Pollutant Dispersion Simulations within an Isothermal Boundary Layer. Journal of Wind Engineering and Industrial Aerodynamics 179: 369-84. [DOI:10.1016/j.jweia.2018.06.010]
21. Penttinen, Olle, Ehsan Yasari, and Håkan Nilsson. (2011), A Pimplefoam Tutorial for Channel Flow, with Respect to Different Les Models. Practice Periodical on Structural Design and Construction 23, no. 2: 1-23.
22. Balogh, Miklós, Alessandro Parente, and Carlo Benocci. Rans Simulation of Abl Flow over Complex Terrains Applying an Enhanced K-Ε Model and Wall Function Formulation: Implementation and Comparison for Fluent and Openfoam.(2012), Journal of wind engineering and industrial aerodynamics 104 : 360-68. [DOI:10.1016/j.jweia.2012.02.023]
23. Farzin, S, M Alizadeh, and Y Hassanzadeh. (2013), Numerical Simulation of Unsteady One-Dimensional Dam-Break Flows Using Tvd Maccormack Scheme. 7th National Congress on Civil Engineering, University of Sistan and Baluchestan, 2013.1-8.
24. Sorenson, RM. (2006), Basic Coastal Engineering. Spring Science and Business Media, New York.
25. Mohammadi firuz, S., Morovati, H., Torabi Azad, M. (2014). Study and analyse of the stability of Rubble mound break water in Nowshahr port by environmental and structural parameters, Iranian Journal of Marine Science and Technology, 18(70), pp. 1-1. (in Persian)
26. Rezapooran, A., Ghanbari-Adivi, E. and Fattahi, Rohollah. (2022), Laboratory study of coastal protection using breakwater structure in comparison with the combination of dyke structure and tree cover, 12th International River Engineering Conference،https://civilica.com/doc/1451051.
27. Pope, S. (2000). Turbulent Flows. univercity of Cambridge.United Kingdom. [DOI:10.1017/CBO9780511840531]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.