پیام خود را بنویسید
دوره 19، شماره 39 - ( 6-1402 )                   جلد 19 شماره 39 صفحات 152-139 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahangir M H, Badrloo A. Feasibility study of using OWC wave converter to supply the required electric charge of a refinery unit (Case study). Marine Engineering 2023; 19 (39) :139-152
URL: http://marine-eng.ir/article-1-968-fa.html
جهانگیر محمد حسین، بدرلو افشین. امکان سنجی استفاده از مبدل موج OWC برای تامین بار الکتریکی مورد نیاز یک واحد پالایشگاهی (مطالعه موردی). مهندسی دریا. 1402; 19 (39) :139-152

URL: http://marine-eng.ir/article-1-968-fa.html


1- دانشگاه تهران
چکیده:   (540 مشاهده)
مطالعه حاضر بر امکان سنجی استفاده از مبدل انرژی موج OWC جهت تامین توان الکتریکی یک واحد پالایشگاهی در نزدیکی سواحل خلیج فارس طی یک افق 20 ساله متمرکز شده است. با توجه به پتانسیل سایرمنابع انرژی تجدیدپذیردرمنطقه مورد مطالعه، یک سیستم ترکیبی از توربین بادی،پنل فتوولتائیک، مبدل امواج،الکترولایزر، باتری و پیل سوختی پیشنهاد شده است. همچنین مقایسه بین استفاده از ریفورمر به جای الکترولایزر نیز مورد مطالعه قرار گرفته است. اثر مبدل انرژی امواج OWC بر سیستم هیبریدی به عنوان یک رویکرد جدید در تولید توان مورد نیاز، ارزیابی شده است. نتایج نشان می دهد که سیستم ترکیبی شامل مبدل OWC با هزینه NPC و COE  26.5دلار و 0.205 دلار در مقایسه با سیستم ترکیبی بدون مبدل OWC جهت پاسخ گویی به تقاضای توان واحد پالایشگاهی، مقرون به صرفه تر است. به گونه ای که حدود 30.7 درصد از توان مورد نیاز توسط مبدل انرژی امواج تامین می شود. استفاده از مبدل انرژی امواج در ماه های با پتانسیل پایین انرژی موج کاهش می یابد و نقش سایر منابع انرژی تجدید پذیر پر رنگ تر می شود.
متن کامل [PDF 1709 kb]   (179 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: سازه های ساحلی
دریافت: 1400/12/24 | پذیرش: 1402/3/10

فهرست منابع
1. [1] G. E. Halkos and E. C. Gkampoura, "Reviewing usage, potentials, and limitations of renewable energy sources," Energies, vol. 13, no. 11, 2020, doi: 10.3390/en13112906. [DOI:10.3390/en13112906]
2. [2] T. Wilberforce, Z. El Hassan, A. Durrant, J. Thompson, B. Soudan, and A. G. Olabi, "Overview of ocean power technology," Energy, vol. 175, pp. 165-181, 2019, doi: 10.1016/j.energy.2019.03.068. [DOI:10.1016/j.energy.2019.03.068]
3. [3] B. Drew, A. R. Plummer, and M. N. Sahinkaya, "A review of wave energy converter technology," Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 223, no. 8, pp. 887-902, 2009, doi: 10.1243/09576509JPE782. [DOI:10.1243/09576509JPE782]
4. [4] S. Michele, E. Renzi, C. Perez-Collazo, D. Greaves, and G. Iglesias, "Power extraction in regular and random waves from an OWC in hybrid wind-wave energy systems," Ocean Eng., vol. 191, no. October, p. 106519, 2019, doi: 10.1016/j.oceaneng.2019.106519. [DOI:10.1016/j.oceaneng.2019.106519]
5. [5] H. Osawa and T. Miyazaki, "Wave-PV hybrid generation system carried in the offshore floating type wave power device 'Mighty Whale,'" Ocean '04 - MTS/IEEE Techno-Ocean '04 Bridg. across Ocean. - Conf. Proc., vol. 4, pp. 1860-1866, 2004, doi: 10.1109/oceans.2004.1406427. [DOI:10.1109/OCEANS.2004.1406427]
6. [6] M. D. Abnavi, N. Mohammadshafie, M. A. Rosen, A. Dabbaghian, and F. Fazelpour, "Techno-economic feasibility analysis of stand-alone hybrid wind/photovoltaic/diesel/battery system for the electrification of remote rural areas: Case study Persian Gulf Coast-Iran," Environ. Prog. Sustain. Energy, vol. 38, no. 5, pp. 1-15, 2019, doi: 10.1002/ep.13172. [DOI:10.1002/ep.13172]
7. [7] S. Singh, M. Singh, and S. C. Kaushik, "Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system," Energy Convers. Manag., vol. 128, pp. 178-190, 2016, doi: 10.1016/j.enconman.2016.09.046. [DOI:10.1016/j.enconman.2016.09.046]
8. [8] J. Ahmad et al., "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, vol. 148, pp. 208-234, 2018, doi: 10.1016/j.energy.2018.01.133. [DOI:10.1016/j.energy.2018.01.133]
9. [9] T. Egeland-Eriksen, A. Hajizadeh, and S. Sartori, "Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives," Int. J. Hydrogen Energy, vol. 46, no. 63, pp. 31963-31983, 2021, doi: 10.1016/j.ijhydene.2021.06.218. [DOI:10.1016/j.ijhydene.2021.06.218]
10. [10] H. HassanzadehFard, F. Tooryan, E. R. Collins, S. Jin, and B. Ramezani, "Design and optimum energy management of a hybrid renewable energy system based on efficient various hydrogen production," Int. J. Hydrogen Energy, vol. 45, no. 55, pp. 30113-30128, 2020, doi: 10.1016/j.ijhydene.2020.08.040. [DOI:10.1016/j.ijhydene.2020.08.040]
11. [11] C. H. S. Moura, J. L. Silveira, and W. de Q. Lamas, "Dynamic production, storage, and use of renewable hydrogen: A technical-economic-environmental analysis in the public transport system in São Paulo state, Brazil," Int. J. Hydrogen Energy, vol. 45, no. 56, pp. 31585-31598, 2020, doi: 10.1016/j.ijhydene.2020.08.198. [DOI:10.1016/j.ijhydene.2020.08.198]
12. [12] S. Peláez-Peláez, A. Colmenar-Santos, C. Pérez-Molina, A. E. Rosales, and E. Rosales-Asensio, "Techno-economic analysis of a heat and power combination system based on hybrid photovoltaic-fuel cell systems using hydrogen as an energy vector," Energy, vol. 224, 2021, doi: 10.1016/j.energy.2021.120110. [DOI:10.1016/j.energy.2021.120110]
13. [13] M. A. Baseer, A. Alqahtani, and S. Rehman, "Techno-economic design and evaluation of hybrid energy systems for residential communities: Case study of Jubail industrial city," J. Clean. Prod., vol. 237, p. 117806, 2019, doi: 10.1016/j.jclepro.2019.117806. [DOI:10.1016/j.jclepro.2019.117806]
14. [14] D. N. Luta and A. K. Raji, "Decision-making between a grid extension and a rural renewable off-grid system with hydrogen generation," Int. J. Hydrogen Energy, vol. 43, no. 20, pp. 9535-9548, 2018, doi: 10.1016/j.ijhydene.2018.04.032. [DOI:10.1016/j.ijhydene.2018.04.032]
15. [15] S. Mandal, B. K. Das, and N. Hoque, "Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh," J. Clean. Prod., vol. 200, pp. 12-27, 2018, doi: 10.1016/j.jclepro.2018.07.257. [DOI:10.1016/j.jclepro.2018.07.257]
16. [16] L. M. Halabi and S. Mekhilef, "Flexible hybrid renewable energy system design for a typical remote village located in tropical climate," J. Clean. Prod., vol. 177, pp. 908-924, 2018, doi: 10.1016/j.jclepro.2017.12.248. [DOI:10.1016/j.jclepro.2017.12.248]
17. [17] M. Sameti and A. Kasaeian, "Developing a formula for optimum power of an inverted piston-in-cylinder wave engine," Int. J. Renew. Energy Res., vol. 4, no. 2, pp. 471-476, 2014, doi: 10.1234/ijrer.v4i2.1258.
18. [18] M. R. Akhtari and M. Baneshi, "Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer," Energy Convers. Manag., vol. 188, no. January, pp. 131-141, 2019, doi: 10.1016/j.enconman.2019.03.067. [DOI:10.1016/j.enconman.2019.03.067]
19. [19] L. Tribioli and R. Cozzolino, "Techno-economic analysis of a stand-alone microgrid for a commercial building in eight different climate zones," Energy Convers. Manag., vol. 179, no. September 2018, pp. 58-71, 2019, doi: 10.1016/j.enconman.2018.10.061. [DOI:10.1016/j.enconman.2018.10.061]
20. [20] S. Baek et al., "Optimal renewable power generation systems for Busan metropolitan city in South Korea," Renew. Energy, vol. 88, pp. 517-525, 2016, doi: 10.1016/j.renene.2015.11.058. [DOI:10.1016/j.renene.2015.11.058]
21. [21] M. H. Jahangir, A. Shahsavari, and M. A. Vaziri Rad, "Feasibility study of a zero emission PV/Wind turbine/Wave energy converter hybrid system for stand-alone power supply: A case study," J. Clean. Prod., vol. 262, p. 121250, 2020, doi: 10.1016/j.jclepro.2020.121250. [DOI:10.1016/j.jclepro.2020.121250]
22. [22] M. H. Jahangir, S. Fakouriyan, M. A. Vaziri Rad, and H. Dehghan, "Feasibility study of on/off grid large-scale PV/WT/WEC hybrid energy system in coastal cities: A case-based research," Renew. Energy, vol. 162, pp. 2075-2095, 2020, doi: 10.1016/j.renene.2020.09.131. [DOI:10.1016/j.renene.2020.09.131]
23. [23] M. Gökçek and C. Kale, "Techno-economical evaluation of a hydrogen refuelling station powered by Wind-PV hybrid power system: A case study for İzmir-çeşme," Int. J. Hydrogen Energy, vol. 43, no. 23, pp. 10615-10625, 2018, doi: 10.1016/j.ijhydene.2018.01.082. [DOI:10.1016/j.ijhydene.2018.01.082]
24. [24] S. Rahimi, M. Meratizaman, S. Monadizadeh, and M. Amidpour, "Techno-economic analysis of wind turbine-PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area," Energy, vol. 67, pp. 381-396, 2014, doi: 10.1016/j.energy.2014.01.072. [DOI:10.1016/j.energy.2014.01.072]
25. [25] N. M. Isa, H. S. Das, C. W. Tan, A. H. M. Yatim, and K. Y. Lau, "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, vol. 112, pp. 75-90, 2016, doi: 10.1016/j.energy.2016.06.056. [DOI:10.1016/j.energy.2016.06.056]
26. [26] D. N. Luta and A. K. Raji, "Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications," Energy, vol. 166, pp. 530-540, 2019, doi: 10.1016/j.energy.2018.10.070. [DOI:10.1016/j.energy.2018.10.070]
27. [27] M. S. Javed, A. Song, and T. Ma, "Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm," Energy, vol. 176, pp. 704-717, 2019, doi: 10.1016/j.energy.2019.03.131. [DOI:10.1016/j.energy.2019.03.131]
28. [28] A. Brka, Y. M. Al-Abdeli, and G. Kothapalli, "Predictive power management strategies for stand-alone hydrogen systems: Operational impact," Int. J. Hydrogen Energy, vol. 41, no. 16, pp. 6685-6698, 2016, doi: 10.1016/j.ijhydene.2016.03.085. [DOI:10.1016/j.ijhydene.2016.03.085]
29. [29] H. Rezk et al., "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, vol. 175, pp. 423-433, 2019, doi: 10.1016/j.energy.2019.02.167. [DOI:10.1016/j.energy.2019.02.167]
30. [30] R. Cozzolino, L. Tribioli, and G. Bella, "Power management of a hybrid renewable system for artificial islands: A case study," Energy, vol. 106, pp. 774-789, 2016, doi: 10.1016/j.energy.2015.12.118. [DOI:10.1016/j.energy.2015.12.118]
31. [31] A. Singh, P. Baredar, and B. Gupta, "Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building," Energy Convers. Manag., vol. 145, pp. 398-414, 2017, doi: 10.1016/j.enconman.2017.05.014. [DOI:10.1016/j.enconman.2017.05.014]
32. [32] C. Y. Tung and N. A. Saidina Amin, "Analysis of Carbon Dioxide Reforming of Methane via Thermodynamic Equilibrium Approach," J. Teknol., vol. 43, no. 1, pp. 30-49, 2005, doi: 10.11113/jt.v43.785. [DOI:10.11113/jt.v43.785]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.