1. Council, G. W. E. (2023). Boston Consulting Group. 2023. Mission Critical: Building the global wind energy supply chain for a, 1.
2. Liu, Y., Han, S., & Yan, J. (2025). Offshore Wind Farm Technology. Springer Nature. [
DOI:10.1007/978-981-96-1889-7] [
PMID]
3. Yamaguchi, A., & Ishihara, T. (2015). Floating offshore wind measurement system by using LIDAR and its verification. Proceedings of the Europe's Premier Wind Energy Event.
4. Schwarz, M., Glienke, R., Wegener, F., & Seidel, M. (2023, June). Fatigue Assessment of Eccentrically Loaded Flange Connections in Wind Energy Turbines. In ISOPE International Ocean and Polar Engineering Conference (pp. ISOPE-I). ISOPE.
5. Schafhirt, S., Page, A., Eiksund, G. R., & Muskulus, M. (2016). Influence of soil parameters on the fatigue lifetime of offshore wind turbines with monopile support structure. Energy Procedia, 94, 347-356. [
DOI:10.1016/j.egypro.2016.09.194]
6. van der Tempel, J., & Molenaar, D. P. (2002). Wind turbine structural dynamics-a review of the principles for modern power generation, onshore and offshore. Wind engineering, 26(4), 211-222. [
DOI:10.1260/030952402321039412]
7. Colwell, S., & Basu, B. (2009). Tuned liquid column dampers in offshore wind turbines for structural control. Engineering structures, 31(2), 358-368. [
DOI:10.1016/j.engstruct.2008.09.001]
8. Dezvareh, R., Bargi, K., & Mousavi, S. A. (2016). Control of wind/wave-induced vibrations of jacket-type offshore wind turbines through tuned liquid column gas dampers. Structure and Infrastructure Engineering, 12(3), 312-326. [
DOI:10.1080/15732479.2015.1011169]
9. Bargi, K., Dezvareh, R., & Mousavi, S. A. (2016). Contribution of tuned liquid column gas dampers to the performance of offshore wind turbines under wind, wave, and seismic excitations. Earthquake Engineering and Engineering Vibration, 15(3), 551-561. [
DOI:10.1007/s11803-016-0343-z]
10. Hokmabady, H., Mohammadyzadeh, S., & Mojtahedi, A. (2019). Suppressing structural vibration of a jacket-type platform employing a novel Magneto-Rheological Tuned Liquid Column Gas Damper (MR-TLCGD). Ocean Engineering, 180, 60-70. [
DOI:10.1016/j.oceaneng.2019.03.055]
11. Lu, F., Long, K., Diaeldin, Y., Saeed, A., Zhang, J., & Tao, T. (2023). A time-domain fatigue damage assessment approach for the tripod structure of offshore wind turbines. Sustainable Energy Technologies and Assessments, 60, 103450. [
DOI:10.1016/j.seta.2023.103450]
12. Wu, T., Zhang, C., & Guo, X. (2024). Dynamic responses of monopile offshore wind turbines in cold sea regions: Ice and aerodynamic loads with soil-structure interaction. Ocean Engineering, 292, 116536. [
DOI:10.1016/j.oceaneng.2023.116536]
13. Chen, J., Hu, Z., Liu, G., & Wan, D. (2019). Coupled aero-hydro-servo-elastic methods for floating wind turbines. Renewable energy, 130, 139-153. [
DOI:10.1016/j.renene.2018.06.060]
14. Li, T. (2024). Machine learning-based wind turbine control systems for demand-oriented scenarios.
15. Shittu, A. A. (2020). Structural reliability assessment of complex offshore structures based on non-intrusive stochastic methods (Doctoral dissertation, Cranfield University).
16. Du, J., Li, H., Zhang, M., & Wang, S. (2015). A novel hybrid frequency-time domain method for the fatigue damage assessment of offshore structures. Ocean Engineering, 98, 57-65. [
DOI:10.1016/j.oceaneng.2015.02.004]
17. Sharifi, M., Lotfollahi-Yaghin, M. A., Ahmadi, H., & Mojtahedi, A. (2025). Geometrical effects on the degree of bending (DoB) in two-planar tubular DY-joints of jacket substructure in offshore wind turbines. Ocean Engineering, 341, 122687. [
DOI:10.1016/j.oceaneng.2025.122687]
18. Wang, Y., Liang, F., Zhang, H., & Zheng, H. (2025). Numerical evaluation of the dynamic performance of recommissioned offshore wind turbines under service life extension and repowering strategies. Computers and Geotechnics, 186, 107370. [
DOI:10.1016/j.compgeo.2025.107370]
19. Jonkman, J. M., & Buhl, M. L. (2005). FAST user's guide (Vol. 365, p. 366). Golden, CO, USA: National Renewable Energy Laboratory.
20. Dezvareh, R., & Nazokkar, A. (2025). Enhancing Dynamic Performance of OC4-DeepCwind Semi-submersible Floating Wind Turbine Utilizing Multi-level Semi-active Dampers. Arabian Journal for Science and Engineering, 1-23. [
DOI:10.1007/s13369-025-10507-0]
21. Nazokkar, A., & Dezvareh, R. (2022). Vibration control of floating offshore wind turbine using semi-active liquid column gas damper. Ocean Engineering, 265, 112574. [
DOI:10.1016/j.oceaneng.2022.112574]
22. Emami, M., Dezvareh, R., & Mousavi, S. A. (2022). Contribution of fluid viscous dampers on fatigue life of lattice-type offshore wind turbines. Ocean Engineering, 245, 110506. [
DOI:10.1016/j.oceaneng.2021.110506]
23. Muff, A., Wormsen, A., Hørte, T., Fjeldstad, A., Osen, P., Kirkemo, F., ... & Reinås, L. (2021, June). Use of DNVGL-RP-C203 for Determining the Fatigue Capacity of Connectors. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 85123, p. V002T02A010). American Society of Mechanical Engineers. [
DOI:10.1115/OMAE2021-62880]
24. Kauzlarich, J. J. (1989). The palmgren-miner rule derived. In Tribology Series (Vol. 14, pp. 175-179). Elsevier. [
DOI:10.1016/S0167-8922(08)70192-5]