1. Dodge, S. (2011). Exploring movement using similarity analysis [PhD Thesis, University of Zurich]. https://www.zora.uzh.ch/id/eprint/59842/
2. Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., & Smouse, P. E. (2008). A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences, 105(49), 19052-19059. [
DOI:10.1073/pnas.0800375105] [
PMID] [
]
3. Liu, X., & Karimi, H. A. (2006). Location awareness through trajectory prediction. Computers, Environment and Urban Systems, 30(6), 741-756. [
DOI:10.1016/j.compenvurbsys.2006.02.007]
4. Rodrigue, J.-P. (2020). The geography of transport systems. Routledge. [
DOI:10.4324/9780429346323]
5. Grech, M. R., Horberry, T., & Smith, A. (2002). Human Error in Maritime Operations: Analyses of Accident Reports Using the Leximancer Tool. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 46(19), 1718-1721. [
DOI:10.1177/154193120204601906]
6. Shin, Y., Kim, N., Lee, H., In, S. Y., Hansen, M., & Yoon, Y. (2024). Deep learning framework for vessel trajectory prediction using auxiliary tasks and convolutional networks. Engineering Applications of Artificial Intelligence, 132, 107936 https://www.sciencedirect.com/science/article/pii/S0952197624000940 [
DOI:10.1016/j.engappai.2024.107936]
7. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://ieeexplore.ieee.org/abstract/document/6795963/ [
DOI:10.1162/neco.1997.9.8.1735] [
PMID]
8. Burger, C. N., Kleynhans, W., & Grobler, T. L. (2022). Extended linear regression model for vessel trajectory prediction with a-priori AIS information. Geo-spatial Information Science, 27(1), 202-220. [
DOI:10.1080/10095020.2022.2072241]
9. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
10. Rong, H., Teixeira, A. P., & Soares, C. G. (2019). Ship trajectory uncertainty prediction based on a Gaussian Process model. Ocean Engineering, 182, 499-511. [
DOI:10.1016/j.oceaneng.2019.04.024]
11. Tang, H., Yin, Y., & Shen, H. (2019). A model for vessel trajectory prediction based on long short-term memory neural network. Journal of Marine Engineering & Technology, 21(3), 136-145. [
DOI:10.1080/20464177.2019.1665258]
12. Suo, Y., Chen, W., Claramunt, C., & Yang, S. (2020). A ship trajectory prediction framework based on a recurrent neural network. Sensors, 20(18), 5133. [
DOI:10.3390/s20185133] [
PMID] [
]
13. Alizadeh, D., Alesheikh, A. A., & Sharif, M. (2021). Vessel trajectory prediction using historical automatic identification system data. the Journal of Navigation, 74(1), 156-174. [
DOI:10.1017/S0373463320000442]
14. Murray, B., & Perera, L. P. (2021). An AIS-based deep learning framework for regional ship behavior prediction. Reliability Engineering & System Safety, 215, 107819. [
DOI:10.1016/j.ress.2021.107819]
15. Burger, C. N., Kleynhans, W., & Grobler, T. L. (2022). Extended linear regression model for vessel trajectory prediction with a-priori AIS information. Geo-spatial Information Science, 27(1), 202-220. [
DOI:10.1080/10095020.2022.2072241]
16. Sun, Q., Tang, Z., Gao, J., & Zhang, G. (2022). Short-term ship motion attitude prediction based on LSTM and GPR. Applied Ocean Research, 118, 102927. [
DOI:10.1016/j.apor.2021.102927]
17. Xiao, Y., Hu, Y., Liu, J., Xiao, Y., & Liu, Q. (2024). An Adaptive Multimodal Data Vessel Trajectory Prediction Model Based on a Satellite Automatic Identification System and Environmental Data. Journal of Marine Science and Engineering, 12(3), 513. [
DOI:10.3390/jmse12030513]
18. Li, Y., Yu, Q., & Yang, Z. (2024). Vessel Trajectory Prediction for Enhanced Maritime Navigation Safety: A Novel Hybrid Methodology. Journal of Marine Science and Engineering, 12(8), 1351. [
DOI:10.3390/jmse12081351]
19. Mehri, S., Alesheikh, A. A., & Basiri, A. (2023). A context-aware approach for vessels' trajectory prediction. Ocean Engineering, 282, 114916. [
DOI:10.1016/j.oceaneng.2023.114916]
20. Employing Traditional Machine Learning Algorithms for Big Data Streams Analysis: The Case of Object Trajectory Prediction, 127 Journal of Systems and Software 249 (Elsevier 2017). https://www.sciencedirect.com/science/article/pii/S016412121630084X [
DOI:10.1016/j.jss.2016.06.016]