1. PAL, D. and RAJ, K.,(2021), Biological activities of marine products and nutritional importance, Bioactive Natural Products for Pharmaceutical Applications, p. 587-616,
https://doi.org/10.1007/978-3-030-54027-2_17 [
DOI:10.1007/978-3-030-54027-2_17.]
2. MURTI, P. D. B., DWILOKA, B., RADJASA, O. K. and NGGINAK, J.,(2021), Opportunity and Benefits of Functional Food from The Sea: A Review, Jurnal Sains Natural 11, p. 87-95, http://ejournalunb.ac.id/index.php/JSN. [
DOI:10.31938/jsn.v11i2.297]
3. FISHERIES, F.,(2022), The state of worldfisheries and aquaculture. towards blue transformation ,
https://doi.org/10.4060/cc0461en [
DOI:10.4060/cc0461en.]
4. GAO, Q.-F. and DONG, S.-L., (2023), in Aquaculture Ecology, Ed^Eds, Springer, p. 425-445,
https://doi.org/10.1007/978-981-19-5486-3_12 [
DOI:10.1016/j.aquaculture.2015.03002]
5. DONG-HO, J., OH, SEUNG, HOON., BYEONG-WON, PARK., JAE-HWAN, JUNG., YONG-JU, KWON.,(2021), Offshore fish-farming cage facility and method of installing same facility., ocean engineering,
https://doi.org/10.1016/j.aquaculture.2020.734928 [
DOI:10.1016/j.aquaculture.2020.734928.]
6. ÖZGÜL, A., AKYOL, O., ŞEN, H., CEYHAN, T. and DÜZBASTıLAR, F. O.,(2023), Wild fish aggregations near sea-cages rearing adult and juvenile fish in the Aegean Sea, Ecohydrology & Hydrobiology 23(1), p. 15-29,
https://doi.org/10.1016/j.ecohyd.2022.09.003 [
DOI:10.1016/j.ecohyd.2022.09.003.]
7. CHENG, H., AARSÆTHER, K. G., LI, L. and ONG, M. C.,(2020), Numerical study of a single-point mooring gravity fish cage with different deformation-suppression methods, Journal of Offshore Mechanics and Arctic Engineering 142(4), p. 041301, [
DOI:10.1115/1.4046115]
8. All the sea potentiality without affecting it's biorhythm, https://www.adaq.it/en/aquaculture/,2024/12/12
9. SIEVERS, M., et al.,(2022), Submerged cage aquaculture of marine fish: A review of the biological challenges and opportunities, Reviews in Aquaculture 14(1), p. 106-119.
https://doi.org/10.1111/raq.12587 [
DOI:10.1111/raq.12587.]
10. ZULBAINARNI, N. and HAJ, M. H.,(2024), Sustainability level of the pearl lobster (Panulirus ornatus) aquaculture business using the systems of floating-net cage and fixed-net cage: A case study in South Sulawesi Province, Indonesia, Aquaculture and Fisheries 9(5), p. 851-859.
https://doi.org/10.3390/jmse11071413 [
DOI:10.3390/jmse11071413.]
11. HUANG, C.-C., TANG, H.-J. and LIU, J.-Y.,(2006), Dynamical analysis of net cage structures for marine aquaculture: Numerical simulation and model testing, Aquacultural engineering 35(3), p. 258-270,
https://doi.org/10.1016/j.aquaeng.2006.03.003 [
DOI:10.1016/j.aquaeng.2006.03.003.]
12. HUANG XIAOHUA, H. X., et al.,(2019), Numerical analysis of the dynamic response of a single-point mooring fish cage in waves and currents, http://doi.org/10.4194/2618-6381-v19_1_03. [
DOI:10.4194/2618-6381-v19_1_03]
13. FREDRIKSSON, D. W., et al.,(2005), Moored fish cage dynamics in waves and currents, IEEE Journal of Oceanic Engineering 30(1), p. 28-36. [
DOI:10.1109/JOE.2004.841412]
14. LUDVIGSEN, T., (2017), Økonomisk analyse av det offshorebaserte havbruket" Octopus", University of Stavanger, Norway. p, http://hdl.handle.net/11250/2494832.
15. ZHENG, X., LEI, YU., CHEN, DAOYI., LI, YI,(2017), Steel-structure net cage for breeding marine shellfish and stereoscopic breeding system, [
DOI:10.1016/j.marstruc.2022.103301]
16. CHEN, C.-P., ZHAO, Y.-P., LI, Y.-C., DONG, G.-H. and ZHENG, Y.-N.,(2012), Numerical analysis of hydrodynamic behaviors of two net cages with grid mooring system under wave action, China Ocean Engineering 26(1), p. 59-76,
https://doi.org/10.1007/s13344-012-0005-5 [
DOI:10.1007/s13344-012-0005-5 .]
17. SHAFIZADEH, E. and GHARECHAHI, A., (A comparative study on the fatigue life of mooring systems for a Wave Dragon (WEC). https://www.researchgate.net/search.
18. HUANG, C.-C. and PAN, J.-Y.,(2010), Mooring line fatigue: A risk analysis for an SPM cage system, Aquacultural engineering 42(1), p. 8-16,
https://doi.org/10.1016/j.aquaeng.2009.09.002 [
DOI:10.1016/j.aquaeng.2009.09.002 .]
19. KIM, T.-H. and HWANG, K.-S.,(2011), Stability analysis of mooring lines of a submersible fish cage system using numerical model, Journal of Advanced Marine Engineering and Technology 35(5), p. 690-699, [
DOI:10.5916/jkosme.2011.35.5.690]
20. SHAFIEFAR, M. and REZVANI, A.,(2008), ** Simple Genetic Algorithm Application in Optimum Design of Mooring Patterns, Journal Of Marine Engineering 4(7), p. 27-39, http://dorl.net/dor/20.1001.1.17357608.1387.4.7.3.0 [In Persian].
21. ZAMANI MOFRAD, P. and KAZEMI, S.,(2019), Hydrodynamic Frequency Analysis of a Uniformly Moored SPM in Persian Gulf Environment Using Numerical Method, Journal Of Marine Engineering 15(29), p. 113-121, http://dorl.net/dor/20.1001.1.17357608.1398.15.29.9.7 [In Persian].
22. GHARECHAE, A. and KETABDARI, M. J.,(2023), Semi-analytical study of wave interaction with a submerged permeable sphere applied on a spherical aquaculture cage, Ocean Engineering 272, p. 113839, [
DOI:10.1016/j.oceaneng.2023.113839]
23. GHARECHAE, A. and KETABDARI, M. J.,(2022), A dynamical study on sea waves interaction with an array of circular elastic floaters of aquaculture fish cages, Marine Structures 85, p. 103241, [
DOI:10.1016/j.marstruc.2022.103241]
24. GHARECHAE, A. and KETABDARI, M. J.,(2020), Semi-analytical study on regular sea wave interaction with circular elastic floaters of aquaculture fish cages, Aquacultural engineering 91, p. 102125, [
DOI:10.1016/j.aquaeng.2020.102125]
25. GHARECHAE, A., KETABDARI, M. J., KITAZAWA, D. and LI, Q.,(2020), Semi-analytical and experimental study on array of elastic circular floaters vertical motions in regular sea waves, Ocean Engineering 217, p. 107851, [
DOI:10.1016/j.oceaneng.2020.107851]
26. MA, C., ZHAO, Y.-P. and BI, C.-W.,(2022), Numerical study on hydrodynamic responses of a single-point moored vessel-shaped floating aquaculture platform in waves, Aquacultural engineering 96, p. 102216. [
DOI:10.1016/j.aquaeng.2021.102216]
27. TANG, H. J., HUANG, C. C., & CHEN, W. M. ,(2011), Dynamics of dual pontoon floating structure for cage aquaculture in a two-dimensional numerical wave tank. , Journal of Fluids and Structures, 27(7), 918-936, [
DOI:10.1016/j.jfluidstructs.2011.06.009]
28. LI, L., FU, S., XU, Y., WANG, J., & YANG, J,(2013), Dynamic responses of floating fish cage in waves and current, Ocean Engineering 72, 297-303,
https://doi.org/10.1016/j.oceaneng.2013.07.004 [
DOI:10.1016/j.oceaneng.2013.07.004.]
29. BAI, X. D., ZHAO, Y. P., DONG, G. H., & LI, Y. C. ,(2015), Hydrodynamic analysis of elastic floating collars in random waves, China Ocean Engineering 29(3), 341-356,
https://doi.org/10.1007/s13344-015-0024-0 [
DOI:10.1007/s13344-015-0024-0.]
30. ZHAO, Y., GUAN, C., BI, C., LIU, H., & CUI, Y. ,(2019), Experimental investigations on hydrodynamic responses of a semi-submersible offshore fish farm in waves. , Journal of Marine Science and Engineering, 7(7), 238,
https://doi.org/10.3390/jmse7070238 [
DOI:10.3390/jmse7070238.]
31. THOMSEN, J. B., et al.,(2021), Modeling the TetraSpar floating offshore wind turbine foundation as a flexible structure in OrcaFlex and OpenFAST, Energies 14(23), p. 7866,
https://doi.org/10.3390/en14237866 [
DOI:10.3390/en14237866.]
32. ZHAO, H., XU, N., LI, Y. and WANG, Y.,(2022), The effect of new steep wave riser configurations on the stability of the suspension cluster manifold based on Orcaflex, Ships and Offshore Structures 17(5), p. 1132-1141,
https://doi.org/10.1080/17445302.2021.1897219 [
DOI:10.1080/17445302.2021.1897219.]
33. LI, P., (2017), A Theoretical and Experimental Study of Wave-induced Hydroelastic Response of a Circular Floating Collar PhD Thesis, Norwegian University of Science and Technology, Department of Marine Technology, Trondheim, Norway, http://hdl.handle.net/11250/2436667.