پیام خود را بنویسید

XML English Abstract Print


1- دانشگاه جامع امام حسین (ع)
چکیده:   (349 مشاهده)
با توسعه روزافزون زیرسطحی­ های بدون سرنشین، محاسبه دقیق ضرایب هیدرودینامیکی موجود در معادلات حرکت این زیرسطحی­ ها برای پیش‌بینی مانورپذیری، پایداری دینامیکی و طراحی کنترلر زیرسطحی اهمیت ویژه ­ای دارد. یکی از پارامترهای موثر در عدم قطعیت نتایج حاصل از روابط رگراسیونی برای محاسبه ضرائب هیدرودینامیکی، فاصله سطوح کنترلی از بدنه است. در این مقاله به منظور بررسی اثر فاصله از بدنه بر تعدادی از ضرایب هیدرودینامیکی خطی مانور، تحلیل عددی بر روی بدنه زیرسطحی معیار سابوف انجام شده و ضرایب میرایی و جرم افزوده با استفاده از آزمون­ های استاتیکی و دینامیکی موردمطالعه قرار گرفته است. فاصله عمودی سطوح کنترلی از بدنه به‌عنوان متغیر در نظر گرفته شده و تحلیل در چمدین فاصله سطوح کنترلی از بدنه انجام شده است. نتایج عددی پس از تطابق با نتایج آزمایشگاهی، نشان داد که ضرایب هیدرودینامیکی از فاصله بیش از 0/06 متر، مستقل از فاصله بین بدنه و سطوح کنترلی می ­شوند. همچنین در تست دریفت استاتیکی با افزایش فاصله سطوح کنترلی از بدنه، ضریب هیدرودینامیکی مربوط به نیروی سوی افزایش و ضریب هیدرودینامیکی مربوط به گشتاور یاو کاهش می‌یابد. اما در تست سوی خالص با افزایش فاصله سطوح کنترلی از بدنه ضریب هیدرودینامیکی مربوط به نیروی سوی کاهش و ضریب هیدرودینامیکی مربوط به گشتاور یاو در ابتدا کاهش و سپس افزایش می­ یابد.
متن کامل [PDF 1756 kb]   (75 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: هیدرودینامیک عددی
دریافت: 1403/1/27 | پذیرش: 1403/4/9

فهرست منابع
1. M. Moonesun, Y. M. Korol, N. Valeri, A. Brazhko, and A. Ursolov, "Bottom effect on the submarine moving close to the sea bottom," J. Sci. Eng. Res., vol. 6, no. 1, pp. 106-113, 2016.
2. M. Moonesun and Y. M. Korol, "Minimum Immersion Depth for EliminatingFree Surface Effect on Submerged Submarine Resistance," Turkish J. Eng. Sci. Technol., vol. 3, no. 1, pp. 36-46, 2015.
3. T. Ohmori, "Finite-volume simulation of flows about a ship in maneuvering motion," J. Mar. Sci. Technol., vol. 3, no. 2, pp. 82-93, 1998, doi: 10.1007/BF02492563. [DOI:10.1007/BF02492563]
4. A. Cura Hochbaum, "Computation of the Turbulent Flow around a Ship Model in Steady Turn and in Steady Oblique Motion," in 22nd ONR Symposium on Naval Hydrodynamics, 1998.
5. B. Alessandrini and G. Delhommeau, "Viscous free surface flow past a ship in drift and in rotating motion," in 22th Symposium on Naval Hydrodynamics, 1998.
6. C. Delen and O. K. Kinaci, "Direct CFD simulations of standard maneuvering tests for DARPA Suboff," Ocean Eng., vol. 276, p. 114202, 2023, doi: 10.1016/j.oceaneng.2023.114202. [DOI:10.1016/j.oceaneng.2023.114202]
7. Y. J. Cho, W. Seok, K. H. Cheon, and S. H. Rhee, "Maneuvering simulation of an X-plane submarine using computational fluid dynamics," Int. J. Nav. Archit. Ocean Eng., vol. 12, pp. 843-855, 2020, doi: 10.1016/j.ijnaoe.2020.10.001. [DOI:10.1016/j.ijnaoe.2020.10.001]
8. R. Doyle, T. L. Jeans, A. G. L. Holloway, and D. Fieger, "URANS simulations of an axisymmetric submarine hull undergoing dynamic sway," Ocean Eng., vol. 172, pp. 155-169, 2019, doi: 10.1016/j.oceaneng.2018.11.019. [DOI:10.1016/j.oceaneng.2018.11.019]
9. A. Cura-Hochbaum and S. Uharek, "Prediction of ship manoeuvrability in waves based on RANS simulations," in 31st Symposium on Naval Hydrodynamics, 2016, pp. 11-16.
10. A. Cura Hochbaum and S. Uharek, "Prediction of the Manoeuvring Behaviour of the Kcs," in Simmam, 2014.
11. A. Cura Hochbaum, "Virtual PMM Tests for Manoeuvring Prediction," in 26th Symposium on Naval Hydrodynamics, 2006, pp. 17-22.
12. B. Racine and E. Paterson, "CFD-based method for simulation of marine-vehicle maneuvering," in 35th AIAA Fluid Dynamics Conference and Exhibit, 2005, p. 4904. [DOI:10.2514/6.2005-4904]
13. Y. Pan, H. Zhang, and Q. Zhou, "Numerical prediction of submarine hydrodynamic coefficients using CFD simulation," J. Hydrodyn., vol. 24, no. 6, pp. 840-847, 2012. [DOI:10.1016/S1001-6058(11)60311-9]
14. S. He, P. Kellett, Z. Yuan, A. Incecik, O. Turan, and E. Boulougouris, "Manoeuvring prediction based on CFD generated derivatives," J. Hydrodyn., vol. 28, no. 2, pp. 284-292, 2016. [DOI:10.1016/S1001-6058(16)60630-3]
15. H. Islam and C. G. Soares, "Estimation of hydrodynamic derivatives of a container ship using PMM simulation in OpenFOAM," Ocean Eng., vol. 164, pp. 414-425, 2018. [DOI:10.1016/j.oceaneng.2018.06.063]
16. J. Amini Foroushani and M. Gandomkar, "Extraction of hydrodynamic coefficients applying planning mechanism motion maneuver using computational fluid dynamics," J. Solid Fluid Mech., vol. 8, no. 1, pp. 215-228, 2018.
17. A. B. Phillips, M. Furlong, and S. R. Turnock, "Virtual planar motion mechanism tests of the autonomous underwater vehicle autosub," 2007.
18. S.-K. Lee, T.-H. Joung, S.-J. Cheo, T.-S. Jang, and J.-H. Lee, "Evaluation of the added mass for a spheroid-type unmanned underwater vehicle by vertical planar motion mechanism test," Int. J. Nav. Archit. Ocean Eng., vol. 3, no. 3, pp. 174-180, 2011. [DOI:10.2478/IJNAOE-2013-0060]
19. S. H. Mousavizadegan, "Investigation on the Effect of Tail Form on Autonomous Underwater Vehicle (AUV) Maneuverability," J. Mar. Eng., vol. 12, no. 24, pp. 89-101, 2017.
20. Y. Wang, T. Gao, Y. Pang, and Y. Tang, "Investigation and optimization of appendage influence on the hydrodynamic performance of AUVs," J. Mar. Sci. Technol., vol. 24, pp. 297-305, 2019. [DOI:10.1007/s00773-018-0558-y]
21. A. Hajivand, S. H. Mousavizadegan, M. Sadeghian, and M. Fadavi, "Effect of hydroplane profile on hydrodynamic coefficients of an autonomous underwater vehicle," Brodogr. Teor. i praksa Brodogr. i Pomor. Teh., vol. 67, no. 1, pp. 19-41, 2016.
22. S. K. Shariati and S. H. Mousavizadegan, "The effect of appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface," Appl. Ocean Res., vol. 67, pp. 31-43, 2017. [DOI:10.1016/j.apor.2017.07.001]
23. S. Mohammmad Beigi, A. Shateri, and M. Dehghan Manshadi, "Experimental investigation of the effect of displacement of stern planes on reducing non-uniformity and fluctuations of a submarine's wake flow," Modares Mech. Eng., vol. 21, no. 4, pp. 209-224, 2021.
24. M. S. Seif and A. Hasanvand, "Investigating the geometry and control surface of AUV robots on hydrodynamics performance," J. Mar. Eng., vol. 17, no. 33, pp. 53-64, 2021.
25. G. Lin, Y. Yang, Z. He, and P. Jiao, "Hydrodynamic optimization in high-acceleration underwater motions using added-mass coefficient," Ocean Eng., vol. 263, p. 112274, 2022. [DOI:10.1016/j.oceaneng.2022.112274]
26. A. Hussain, A. Loya, Z. Riaz, and S. A. Malik, "To study the effectiveness of stern appendages (Cruciform & X Shaped configurations) for maneuverability of autonomous underwater vessel using computational fluid dynamics," Ocean Eng., vol. 272, p. 113858, 2023. [DOI:10.1016/j.oceaneng.2023.113858]
27. E. Yari, "Calculation Submarine Hydrodynamic Coefficient by Hybrid Method," J. Mar. Eng., vol. 19, no. 38, pp. 38-50, 2023. [DOI:10.61186/marineeng.19.38.38]
28. D. A. Jones, D. B. Clarke, I. B. Brayshaw, J. L. Barillon, and B. Anderson, "The calculation of hydrodynamic coefficients for underwater vehicles," Citeseer, 2002.
29. M. Renilson, Submarine Hydrodynamics. Springer, 2018. [DOI:10.1007/978-3-319-79057-2]
30. R. F. Roddy, "Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF model (DTRC Model 5470) from captive-model experiments," David Taylor Res. Center, Sh. Hydromechanics Dep. DTRC/SHD-1298-08, 1990.
31. R. Roddy, J. Feldman, and J. Bedel, Conceptual design of a new planar motion mechanism for investigating the stability and control characteristics of submarines. Naval Surface Warfare Center, Carderock Division, 1995.
32. I. Recommendations, "ITTC-Recommended procedures and guidelines, practical guidelines for ship CFD applications," Technical report, 7.5-03-02, 2011. 3.3. 3, 2011.
33. I. T. T. Conference, "ITTC Recommended Procedures and Guidelines, Practical Guidelines for Ship-Propulsion CFD, 7.5-03-03-01," The International Towing Tank Conference Bournemouth, UK, 2014.
34. D. C. Wilcox, "Turbulence modeling for CFD. La Canada, CA: DCW Industries," Inc, Novemb., 2006.
35. C. H. Sung, M. Y. Jiang, B. Rhee, S. Percival, P. Atsavapranee, and I. Y. Koh, "Validation of the flow around a turning submarine," in The Twenty-Fourth Symposium on Naval Hydrodynamics, Fukuoka, Japan, 2002.
36. I. B. Celik, U. Ghia, P. J. Roache, C. J. Freitas, H. Coleman, and P. E. Raad, "Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications," J. Fluids Eng., vol. 130, no. 7, pp. 078001-078004, 2008, doi: 10.1115/1.2960953. [DOI:10.1115/1.2960953]
37. L. F. Richardson, "IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam," Philos. Trans. R. Soc. London. Ser. A, Contain. Pap. a Math. or Phys. Character, vol. 210, no. 459-470, pp. 307-357, 1911. [DOI:10.1098/rsta.1911.0009]
38. M. Hakamifard and V. F. M. Rostami, "Numerical and Analytical Calculation of Munk Moment in Real Flow for an Autonomous Submarine in Pure Sway Motion in PMM Test," 2019.

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.