1. OLEINIK, P., BELOTI TROMBETTA, T., GUIMARÃES, R., KIRINUS, E. and MARQUES, W.,(2019), Comparative study of the influence of a wave energy converter site on the wave field of Laguna, SC, Brazil, Sustainable Energy Technologies and Assessments 31, p. 262-272. [
DOI:10.1016/j.seta.2018.12.023]
3. NESHAT, M., ALEXANDER, B. and WAGNER, M.,(2020), A hybrid cooperative co-evolution algorithm framework for optimising power take off and placements of wave energy converters, Information Sciences 534, p. 218-244. [
DOI:10.1016/j.ins.2020.03.112]
5. WEI, Y., ABADIE, T., HENRY, A. and DIAS, F.,(2016), Wave interaction with an Oscillating Wave Surge Converter. Part II: Slamming, Ocean Engineering 113, p. 319-334. [
DOI:10.1016/j.oceaneng.2015.12.041]
6. https://doi.org/10.1016/j.oceaneng.2015.12.041 [
DOI:10.1016/J.OCEANENG.2015.12.041]
7. EHSAN ARBABI, Abuzar Abazari,(2024), The effects of dimension, geometry and the modules' orientation in a modular flap arrangement on the extracted power density of surge oscillating flap wave energy converter, Journal Of Marine Engineering.
8. https://marine-eng.ir/article-1-1059-en.html
9. NAVAB KHODABANDEH, Abuzar Abazari, MEHDI YUSEFI,(2024), Comparison of the output power of the piston wave energy converter by Morison and the diffraction based numerical method and investigation of effect of WEC dimension on the generated power, iranian journal of marine science and technology.
10. https://navy.iranjournals.ir/article_247931.html?lang=en
11. GIANNINI, G., SANTOS, P., RAMOS, V. and TAVEIRA-PINTO, F.,(2020), On the Development of an Offshore Version of the CECO Wave Energy Converter, Energies 13, p. 1036. [
DOI:10.3390/en13051036]
13. PECHER, A. and KOFOED, J.,(2017), Handbook of Ocean Wave Energy. [
DOI:10.1007/978-3-319-39889-1] [
PMID] [
]
15. ABAZARI, A. and AZIMINIA, M.,(2023), Enhanced power extraction by splitting a single flap-type wave energy converter into a double configuration, Renewable Energy Research and Applications 4(2), p. 243-249.
17. ABAZARI, A. and AZIMINIA, M. M.,(2023), Water wave power extraction by a floating surge oscillating WEC comprising hinged vertical and horizontal flaps, Journal of Energy Management and Technology 7(1), p. 27-33.
18. https://dorl.net/dor/20.1001.1.25883372.2023.7.1.4.4
19. DOROSTKAR, R., ABAZARI, A. and EBRAHIMI, A.,(2022), Energy harvesting through an integrated design of a semi-submersible offshore platform with point absorber wave energy converters, International Journal Of Coastal, Offshore And Environmental Engineering(ijcoe) 7(4), p. 27-36.
21. HOSEIN JOKAR, Abuzar Abazari, REZA DOROSTKAR,(2024), Performance evaluation of a hybrid system of dhow ship and wave energy converter for power generation, Renewable Energy Research and Applications.
22. WANG, Y., ZHANG, L., MICHAILIDES, C., WAN, L. and SHI, W.,(2020), Hydrodynamic Response of a Combined Wind-Wave Marine Energy Structure, Journal of Marine Science and Engineering 8, p. 253. [
DOI:10.3390/jmse8040253]
24. KARIMIRAD, M. and KOUSHAN, K.,(2016), WindWEC: Combining Wind and Wave Energy Inspired by Hywind and Wavestar. [
DOI:10.1109/ICRERA.2016.7884433]
26. GHAFARI, H. R., et al.,(2022), Novel concept of hybrid wavestar- floating offshore wind turbine system with rectilinear arrays of WECs, Ocean Engineering 262, p. 112253. [
DOI:10.1016/j.oceaneng.2022.112253]
27. AUBAULT, A., ALVES, M., SARMENTO, A., RODDIER, D. and PEIFFER, A.,(2011), Modeling of an Oscillating Water Column on the Floating Foundation WindFloat, vol. 5. [
DOI:10.1115/OMAE2011-49014]
29. PÉREZ-COLLAZO, C., GREAVES, D. and IGLESIAS, G.,(2018), Hydrodynamic response of the WEC sub-system of a novel hybrid wind-wave energy converter, Energy Conversion and Management 171. [
DOI:10.1016/j.enconman.2018.05.090]
30. http://dx.doi.org/10.1016/j.enconman.2018.05.090 [
DOI:10.1016/j.enconman.2018.05.090]
31. ABAZARI, A.,(2022), Dynamic Response of a Combined Spar-Type FOWT and OWC-WEC by a Simplified Approach, Renewable Energy Research and Applications.
33. KUMAWAT, K., KARMAKAR, D. and GUEDES SOARES, C., (2019), Numerical Investigation of Semi-submersible Floating Wind Turbine Combined with Flap-Type WECs: Volume 2, p. 793-805. [
DOI:10.1007/978-981-13-3134-3_59]
35. ZHANG, L., SHI, W., KARIMIRAD, M., MICHAILIDES, C. and JIANG, Z.,(2020), Second-order hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines, Ocean Engineering 207, p. 107371. [
DOI:10.1016/j.oceaneng.2020.107371]
36. https://hdl.handle.net/11250/2733600