1. مراجع
2. [1] Graver, J. and Leonard, N, (2001), Underwater glider dynamics and control. [
DOI:10.21236/ADA629179]
3. [2] سوادی منفرد، م، (١٣٩٣)، کنترل تطبیقی غیر مستقیم شناورهای گلایدر خودگردان، دانشکدهی مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان،.
4. [3] Cao, J. Li,D. Zeng,Z. Yao,B. and Lian,L. (2018), Drifting and Gliding: Design of a Multimodal Underwater Vehicle, in 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), p. 1-7. [
DOI:10.1109/OCEANSKOBE.2018.8559291]
5. [4] Cao,J. Lu,D. Li,D. Zeng,Z. Yao,B. and Lian, L. (2019), Smartfloat: A Multimodal Underwater Vehicle Combining Float and Glider Capabilities, IEEE Access, vol. 7, p. 77825-77838. [
DOI:10.1109/ACCESS.2019.2922171]
6. [5] Singh,Y. Bhattacharyya,S. K. and Idichandy,V. G. (2017) CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results, Journal of Ocean Engineering and Science, vol. 2, p. 90-119. [
DOI:10.1016/j.joes.2017.03.003]
7. [6] Kim,K.-S. D. Choi,H.-S. Lee,S. and Kim, J.-Y.( 2017) Dynamics Modeling and Behavior Analysis of Underwater Glider System, Journal of Advanced Research in Ocean Engineering , vol. 3, no. 1, p. 25-31. [
DOI:10.5574/JAROE.2017.3.1.025]
8. [7] Petritoli,E. Leccese,F. and Cagnetti,M. (2019), High Accuracy Buoyancy for Underwater Gliders: The Uncertainty in the Depth Control, Sensors, vol. 19, p. 1831. [
DOI:10.3390/s19081831] [
PMID] [
]
9. [8] Javaid,M. Ovinis,M. Nagarajan,T. and Hashim,F,(2014), Underwater Gliders: A Review, MATEC Web of Conferences, vol. 13, p. 02020. [
DOI:10.1051/matecconf/20141302020]
10. [9] Zhang,H. Liu,C. Yang,Y. and Wang,S. (2020), Ocean thermal energy utilization process in underwater vehicles: Modelling, temperature boundary analysis, and sea trail, International Journal of Energy Research, vol. 44, p. 2966-298. [
DOI:10.1002/er.5123]
11. [10] Xue,D.-Y. Wu,Z.-L. Wang,Y.-H. and Wang, S.-X. (2018), Coordinate Control, Motion Optimization and Sea Experiment of a Fleet of Petrel-II Gliders, Chinese Journal of Mechanical Engineering, vol. 31, p. 17. [
DOI:10.1186/s10033-018-0210-0]
12. [11] Fan S. and Woolsey,C. (2013), Elements of Underwater Glider Performance and Stability, Marine Technology Society Journal, vol. 47, p. 81-98. [
DOI:10.4031/MTSJ.47.3.4]
13. [12] Hong, S.-M. Lee,S. Hyeon,J.-W. Lee,J.-H. Lee,S. Lee, C. et al.,( 2019), Optimal design of combined propulsion Underwater Glider for operation of the East Sea of South Korea, Advances in Mechanical Engineering, vol. 11, p. 1687814019856482. [
DOI:10.1177/1687814019856482]
14. [13] Wang,X. Song,B. Wang,P. and Sun,C.,(2018), Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization, International Journal of Naval Architecture and Ocean Engineering, vol. 10, p. 730-740. [
DOI:10.1016/j.ijnaoe.2017.12.005]
15. [14] Roddy, R. F. (1990). Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF model (DTRC Model 5470) from captive-model experiments (No. DTRC/SHD-1298-08). David Taylor Research Center Bethesda MD Ship Hydromechanics Dept.
16. [15] Groves, N. C., Huang, T. T., & Chang, M. S. (1989). Geometric characteristics of DARPA suboff models:(DTRC Model Nos. 5470 and 5471). David Taylor Research Center.
17. [16] Liu, H. L., & Huang, T. T. (1998). Summary of DARPA SUBOFF experimental program data. Naval Surface Warfare Center Carderock Div Bethesda Md Hydrodynamics Directorate. [
DOI:10.21236/ADA359226]
18. [17] Sherman, J., Davis, R. E., Owens, W. B., & Valdes, J. (2001). The autonomous underwater glider" Spray". IEEE Journal of Oceanic Engineering, 26(4), 437-446. [
DOI:10.1109/48.972076]
19. [18] The Central and Northern California Ocean Observing System (CeNCOOS)- https://www.cencoos.org/observations/sensor-platforms/gliders/