1. [1] Yuh, J. , Marani, G. , & Blidberg, D. R. (2011). Applications of marine robotic vehicles. Intelligent Service Robotics, 4 (4), 221-231. [
DOI:10.1007/s11370-011-0096-5]
2. [2] Abril, J. , Salom, J. , & Calvo, O. (1997). Fuzzy control of a sailboat. International Journal of Approximate Reasoning, 16 (3), 359-375 . [
DOI:10.1016/S0888-613X(96)00132-6]
3. [3] Almeida, J., Silvestre, C., & Pascoal, A. (2010). Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty. International Journal of Robust and Nonlinear Control, 20 (14), 1549-1565. [
DOI:10.1002/rnc.1526]
4. [4] Annamalai, A., & Motwani, A. (2013). A comparison between LQG and MPC autopi- lots for inclusion in a navigation, guidance and control system. MIDAS technical report: MIDAS.SMSE.2013.TR.00. MIDAS.
5. [5] Chen, M., Ge, S. S. , How, B. V. E. , & Choo, Y. S. (2013). Robust adaptive position moor- ing control for marine vessels. IEEE Transactions on Control Systems Technology, 21 (2), 395-409. [
DOI:10.1109/TCST.2012.2183676]
6. [6] Fossen, T. I., & Strand, J. P. (1999). Passive nonlinear observer design for ships us- ing lyapunov methods: Full-scale experiments with a supply vessel. Automatica, 35 (1), 3-16. [
DOI:10.1016/S0005-1098(98)00121-6]
7. [7] Gal, O. (2011a). Automatic obstacle detection for USVs navigation using vision sen- sors. In Robotic sailing (pp. 127-140). Berlin, Heidelberg: Springer. [
DOI:10.1007/978-3-642-22836-0_9]
8. [8] He, W., Ge, S. S., How, B. V. E., & Choo, Y. S. (2014). Dynamics and control of me- chanical systems in offshore engineering. London: Springer. [
DOI:10.1007/978-1-4471-5337-5]
9. [9] Johansen, T. A. (2013). Fuel optimal thrust allocation in dynamic positioning. Control Applications in Marine Systems, 9 (1), 43-48. [
DOI:10.3182/20130918-4-JP-3022.00032]
10. [10] Martins, A., Ferreira, H., Almeida, C. , Silva, H. , Almeida, J. M. , & Silva, E. (2007a). ROAZ and ROAZ II autonomous surface vehicle design and implementation. In Proceedings of international lifesaving congress.
11. [11] Pascoal, A., Silvestre, C., & Oliveira, P. (2006). Vehicle and mission control of single and multiple autonomous marine robots. IEE Control Engineering Series, 69, 353. [
DOI:10.1049/PBCE069E_ch17]
12. [12] Pastore, T., & Djapic, V. (2010). Improving autonomy and control of autonomous sur- face vehicles in port protection and mine countermeasure scenarios. Journal of Field Robotics, 27 (6), 903-914. [
DOI:10.1002/rob.20353]
13. [13] Yu, Z., Bao, X., & Nonami, K. (2008). Course keeping control of an autonomous boat using low cost sensors. Journal of System Design and Dynamics, 2 (1), 389-400. [
DOI:10.1299/jsdd.2.389]
14. [14] Sperry, E. 1922. Directional Stability of Automatically Steered Bodies. Journal of the American Society of Naval Engineers, Vol. 42, No. 2.
15. [15] Lee, S.D., Yu, C.H., Hsiu, K.Y., Hsieh, Y.F., Tzeng, C.Y. and Kehr, Y.Z. 2010. Design and experiment of a small boat track-keeping autopilot. Ocean Engineering, Vol. 37, pp. 208-217. [
DOI:10.1016/j.oceaneng.2009.11.005]
16. [16] Roberts, G.N., et al. 1997. Robust Control Methodology applied to the design of a combined steering/stabiliser system for warships. IEE Proceedings of Control Theory Application, Vol. 144, No. 2, pp. 128-136. [
DOI:10.1049/ip-cta:19970999]
17. [17] Yasukawa, H. and Yoshimura, Y., 2015. Introduction of MMG standard method for ship maneuvering predictions. Journal of Marine Science and Technology, 20(1), pp.37-52. [
DOI:10.1007/s00773-014-0293-y]
18. [18] Kørte, S.Ø., Guidance & control strategies for uuvs. 2011, Norges teknisk-naturvitenskapelige universitet.
19. [19] Li, Z., & Sun, J. (2012). Disturbance compensating model predictive control with ap- plication to ship heading control. IEEE Transactions on Control Systems Technol- ogy, 20 (1), 257-265. [
DOI:10.1109/TCST.2011.2106212]
20. [20] Guerreiro, B. J., Silvestre, C., Cunha, R., & Pascoal, A. (2013). Trajectorytracking non- linear model predictive control for autonomous surface craft. In Proceedings of IEEE European control conference (pp. 3006-3011). [
DOI:10.23919/ECC.2013.6669482]
21. [21] Annamalai, A. S. K., Sutton, R., Yang, C., Culverhouse, P., & Sharma, S. (2014a). Inno- vative adaptive autopilot design for uninhabited surface vehicles. In Proceedings of IET Irish signals & systems conference and China-Ireland international confer- ence on information and communications technologies (pp. 158-163).
22. [22] Sharma, S. K., & Sutton, R. (2013). A genetic algorithm based nonlinear guidance and control system for an uninhabited surface vehicle. Journal of Marine Engineering and Technology, 12 (2), 29-40.
23. [23] Feemster, M. G., & Esposito, J. M. (2011). Comprehensive framework for tracking control and thrust allocation for a highly overactuated autonomous surface ves- sel. Journal of Field Robotics, 28 (1), 80-100. [
DOI:10.1002/rob.20369]
24. [24] Svec, P., Thakur, A., Raboin, E. , Shah, B. C. , & Gupta, S. K. (2014b). Target follow- ing with motion prediction for unmanned surface vehicle operating in cluttered environments. Autonomous Robots, 36 (4), 383-405. [
DOI:10.1007/s10514-013-9370-z]
25. [25] Wondergem, M., Lefeber, E., Pettersen, K. Y., & Nijmeijer, H. (2011). Output feed- back tracking of ships. IEEE Transactions on Control Systems Technology, 19 (2), 4 42-4 48. [
DOI:10.1109/TCST.2010.2045654]
26. [26] Ashrafiuon, H., Muske, K. R., McNinch, L. C., & Soltan, R. A. (2008). Sliding-mode tracking control of surface vessels. IEEE Transactions on Industrial Electronics, 55 (11), 4004-4012. [
DOI:10.1109/TIE.2008.2005933]
27. [27] Majohr, J., & Buch, T. (2006). Modelling, simulation and control of an autonomous surface marine vehicle for surveying applications measuring dolphin MESSIN. IEE Control Engineering Series, 69, 329-352. [
DOI:10.1049/PBCE069E_ch16]
28. [28] Sharma, S. K., & Sutton, R. (2012). Modelling the yaw dynamics of an uninhabited surface vehicle for navigation and control systems design. Journal of Marine En- gineering and Technology, 11 (3), 9-20.
29. [29] Breivik, M., Hovstein, V. E., & Fossen, T. I. (2008). Straight-line target tracking for unmanned surface vehicles. Modeling, Identification and Control, 29 (4), 131-149. [
DOI:10.4173/mic.2008.4.2]
30. [30] Sonnenburg, C. R., & Woolsey, C. A. (2013). Modeling, identification, and control of an unmanned surface vehicle. Journal of Field Robotics, 30 (3), 371-398. [
DOI:10.1002/rob.21452]
31. [31] Fossen, T.I., 2002. Marine control systems-guidance. navigation, and control of ships, rigs and underwater vehicles. Marine Cybernetics, Trondheim, Norway, Org. Number NO 985 195 005 MVA, www. marinecybernetics. com, ISBN: 82 92356 00 2.