Volume 14, Issue 27 (7-2018)                   2018, 14(27): 95-110 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

filom S, panahi R. Ship Collision Probabilistic Risk Analysis by Traffic simulation in Persian Gulf. Journal Of Marine Engineering. 2018; 14 (27) :95-110
URL: http://marine-eng.ir/article-1-638-en.html
assisstant professor, Tarbiat Modares University
Abstract:   (462 Views)
Marine transportation industry, as the main basis of world trade, is of great importance. Here, collision and grounding are the most frequent ones, threatening the industry. To study collision accident and assessment of its occurrence risk, we need to identify ship routes, in which Automatic Identification Systems introduces the best tool. Here, based on the concept of safety domain applied on traffic, high collision concentration locations are identified. Accordingly, probability of collision occurrence in the high risk locations is examined based on the Bayesian network. This study just show sample result of implementing new approaches in accident analysis, which has no previous record in our country.
Full-Text [PDF 1705 kb]   (151 Downloads)    
Type of Study: Research Paper | Subject: Ship Structure
Received: 2017/09/1 | Accepted: 2018/08/7

1. Fujii Y, Oshima R, Yamanouchi H, Mizuki N. Some factors affecting the frequency of accidents in marine traffic: I-the diameter of evasion for crossing encounters, II-the probability of stranding, III-the effect of darkness of the probability of collision and stranding. The Journal of Navigation. 1974;27:239-47. [DOI:10.1017/S0373463300025960]
2. Macduff T. The probability of vessel collisions. Ocean Industry. 1974;9
3. Pedersen PT. Collision and grounding mechanics. Proceedings of WEMT. 1995;95:125-57.
4. Manen S. Ship collision due to the presence of bridges. Technical Report, PIANC General Secretariat, Brussels; 2001.
5. Lrfd A. AASHTO LRFD bridge design specifications. Washington DC: American Association of State Highway Transportation Officials; 2004.
6. Kunz C. Ship bridge collision in river traffic, analysis and design practice. Ship collision analysis. 1998;1998:13-2l.
7. Vrouwenvelder A. Design for ship impact according to Euroeode 1 Part 2.7. Gluver & Olsen (eds). 1998:123-32.
8. Otto S, Pedersen PT, Samuelides M, Sames PC. Elements of risk analysis for collision and grounding of a RoRo passenger ferry. Marine Structures. 2002;15:461-74. [DOI:10.1016/S0951-8339(02)00014-X]
9. Geng B, Wang H, Wang J. Probabilistic Model of Influence Parameters for Vessel-Bridge Collisions in Three-Gorges Reservoir. JOURNAL-TONGJI UNIVERSITY. 2008;36:477.
10. Jianhua F, Yanmin X, Mingjun L, Jingcheng Z, Bing L. Study on dangerous collision area of ships out of control in Sutong Bridge area. 2009.
11. Biehl F, Dalhoff P, Povel D. Collision Risk Analysis and Collision Friendly Design of Offshore Wind Farms.
12. Montewka J, Hinz T, Kujala P, Matusiak J. Probability modelling of vessel collisions. Reliability Engineering & System Safety. 2010;95:573-89. [DOI:10.1016/j.ress.2010.01.009]
13. Antao P, Soares CG. Fault-tree models of accident scenarios of RoPax vessels. International Journal of Automation and Computing. 2006;3:107-16. [DOI:10.1007/s11633-006-0107-8]
14. Ren H-x, Jin Y-c, Yin Y. Real-time shadow rendering in scene system of marine simulator. Image and Graphics, 2007 ICIG 2007 Fourth International Conference on: IEEE; 2007. p. 1010-4. [DOI:10.1109/ICIG.2007.79]
15. Xiao F. Ships in an Artificial Force Field: A Multi-agent System for Nautical Traffic and Safety: TU Delft, Delft University of Technology; 2014.
16. Rijken WWJLvd. Capability Statement of MSCN Simulatrs. Netherland Maritime institue,MARIN; January 2008.
17. Nuygen M. Approach channels: risk-and simulation-based design: TU Delft, Delft University of Technology; 2008.
18. Netherlands MRi. SHIPMA v7.0 release - MARIN. 2013.
19. Moran V, Linares J, Atienza R, Redondo R, Iribarren JR, Groenveld R. DEVELOPMENT OF THE WET INFRASTUCTURE OF THE PORT OF BAHIA BLANCA IN ARGENTINA. PIANC World Congress San Francisco, USA 2014.
20. Fujii Y, Yamanouchi H, Mizuki N. On the fundamentals of marine traffic control. Part 1 probabilities of collision and evasive actions. Electronic Navigation Research Institute Papers. 1970;2:1-16.
21. Lisowski J, Rak A, Czechowicz W. Neural network classifier for ship domain assessment. Mathematics and Computers in simulation. 2000;51:399-406. [DOI:10.1016/S0378-4754(99)00132-9]
22. Smierzchalski R, Michalewicz Z. Modeling of ship trajectory in collision situations by an evolutionary algorithm. IEEE Transactions on Evolutionary Computation. 2000;4:227-41. [DOI:10.1109/4235.873234]
23. Pietrzykowski Z. Ship's Fuzzy Domain–a Criterion for Navigational Safety in Narrow Fairways. Journal of Navigation. 2008;61:499-514. [DOI:10.1017/S0373463308004682]
24. Szlapczynski R. A unified measure of collision risk derived from the concept of a ship domain. Journal of Navigation. 2006;59:477-90. [DOI:10.1017/S0373463306003833]
25. Goodwin EM. A statistical study of ship domains. Journal of Navigation. 1975;28:328-44. [DOI:10.1017/S0373463300041230]
26. Wang N, Meng X, Xu Q, Wang Z. A unified analytical framework for ship domains. Journal of Navigation. 2009;62:643. [DOI:10.1017/S0373463309990178]
27. Pimontel L. A study into maritime collision probability: TU Delft, Delft University of Technology; 2007.
28. Davis P, Dove M, Stockel C. A computer simulation of marine traffic using domains and arenas. Journal of Navigation. 1980;33:215-22. [DOI:10.1017/S0373463300035220]
29. Davis P, Dove M, Stockel C. A computer simulation of multi-ship encounters. Journal of Navigation. 1982;35:347-52. [DOI:10.1017/S0373463300022177]
30. ZHAO J-S, WU Z-L, WANG F-C, GOODWIN E. COMMENTS ON SHIP DOMAINS. Journal of Navigation. 1993.
31. Zhu X, Xu H, Lin J. Domain and its model based on neural networks. The Journal of Navigation. 2001;54:97-103. [DOI:10.1017/S0373463300001247]
32. Goerlandt F, Ståhlberg K, Kujala P. Comparative study of input models for collision risk evaluation. Ocean Engineering–manuscript under review. 2011.
33. Montewka J, Goerlandt F, Lammi H, Kujala P. A Method for Assessing a Causation Factor for a Geometrical MDTC Model for Ship-Ship Collision Probability Estimation. Methods and Algorithms in Navigation: Marine Navigation and Safety of Sea Transportation. 2011:65.
34. Coldwell T. Marine traffic behaviour in restricted waters. Journal of Navigation. 1983;36:430-44. [DOI:10.1017/S0373463300039783]
35. Commandant U. International regulations for prevention of collisions at sea, 1972 (72 COLREGS). US Department of Transportation, US Coast Guard, COMMANDANT INSTRUCTION M. 1999;16672.
36. Pietrzykowski Z. Ship fuzzy domain in assessment of navigational safety in restricted areas. Proc of 3rd Navigational Symposium1999. p. 253-64.
37. Śmierzchalski R. Evolutionary algorithm in problem of avoidance collision at sea. Artificial intelligence and security in computing systems: Springer; 2003. p. 81-90.
38. Smierzchalski R. On-line trajectory planning in collision situation at sea by evolutionary computation-experiments. Proceeding of IFAC Conference on Computer Applications in Marine Systems2001. [DOI:10.1016/S1474-6670(17)35116-9]
39. Pietrzykowski Z, Uriasz J. The ship domain–a criterion of navigational safety assessment in an open sea area. Journal of Navigation. 2009;62:93-108. [DOI:10.1017/S0373463308005018]
40. Wang N. An intelligent spatial collision risk based on the quaternion ship domain. Journal of Navigation. 2010;63:733-49. [DOI:10.1017/S0373463310000202]
41. Kijima K, Furukawa Y. Automatic collision avoidance system using the concept of blocking area. Proceeding of IFAC Conference on Manoeuvring and Control of Marine Craft2003. [DOI:10.1016/S1474-6670(17)37811-4]
42. Zaman M, Kobayashi E, Wakabayashi N, Khanfir S, Pitana T, Maimun A. Fuzzy FMEA model for risk evaluation of ship collisions in the Malacca Strait: based on AIS data. Journal of Simulation. 2014;8:91-104. [DOI:10.1057/jos.2013.9]
43. Guedes Soares C, Teixeira A, Antao P. Accounting for human factors in the analysis of maritime accidents. Foresight and precaution. 2000:521-8.
44. Rothblum AM. Human error and marine safety. National Safety Council Congress and Expo, Orlando, FL2000. 47- Hänninen M, Kujala P. The effects of causation probability on the ship collision statistics in the Gulf of Finland. Marine Navigation and Safety of Sea Transportation, London: Taylor and Francis. 2009:267-72. 48- COWI. Risk analysis of oil and chemical spills in Danish waters (In Danish). Minister of Defence; 2007. 51- Montewka J, Goerlandt F, Ehlers S, Kujala P, Erceg S, Polic D, et al. A model for consequence evaluation of ship–ship collision based on Bayesian belief network. Sustainable Maritime Transportation and Exploitation of Sea Resources Taylor & Francis Group, London. 2012. 53- IALA. IWRAP-Theory Definition. 2014.
45. Hetherington C, Flin R, Mearns K. Safety in shipping: The human element. Journal of safety research. 2006;37:401-11. [DOI:10.1016/j.jsr.2006.04.007]
46. Trucco P, Cagno E, Ruggeri F, Grande O. A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation. Reliability Engineering & System Safety. 2008;93:845-56. [DOI:10.1016/j.ress.2007.03.035]
47. Hänninen M, Kujala P. Influences of variables on ship collision probability in a Bayesian belief network model. Reliability Engineering & System Safety. 2012;102:27-40. [DOI:10.1016/j.ress.2012.02.008]
48. Hänninen M, Valdez Banda OA, Kujala P. Bayesian network model of maritime safety management. Expert Systems with Applications. 2014;41:7837-46. [DOI:10.1016/j.eswa.2014.06.029]
49. Kujala P, Hänninen M, Arola T, Ylitalo J. Analysis of the marine traffic safety in the Gulf of Finland. Reliability Engineering & System Safety. 2009;94:1349-57. [DOI:10.1016/j.ress.2009.02.028]

Send email to the article author

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.